Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
235 lines (219 sloc) 40.9 KB
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head>
<!--
Tests for the OpenGL ES 2.0 HTML Canvas context
Copyright (C) 2009 Ilmari Heikkinen <ilmari.heikkinen@gmail.com>
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
-->
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../unit.css" />
<script type="application/x-javascript" src="../unit.js"></script>
<script type="application/x-javascript" src="../util.js"></script>
<script type="application/x-javascript">
Tests.autorun = false;
Tests.message = "This might take a second or two. Take the upload numbers with a dose of salt, as there's no drawing code using the data.";
Tests.startUnit = function () {
var canvas = document.getElementById('gl');
var gl = canvas.getContext(GL_CONTEXT_ID);
return [gl];
}
Tests.testTexImage2D = function(gl) {
var tex = gl.createTexture();
var texArr = new Array(256*256*4);
var bufData = new Array(256*256*4);
for (var i=0; i<texArr.length; i++) texArr[i] = 0;
for (var i=0; i<bufData.length; i++) bufData[i] = 0.5;
gl.bindTexture(gl.TEXTURE_2D, tex);
time("texImage2D", function() {
for (var i=0; i<100; i++)
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 256, 256, 0, gl.RGBA, gl.UNSIGNED_BYTE, texArr);
});
time("texImage2D", function() {
for (var i=0; i<100; i++)
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, 256, 256, 0, gl.RGBA, gl.UNSIGNED_BYTE, texArr);
});
time("texSubImage2D", function() {
for (var i=0; i<100; i++)
gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, 256, 256, gl.RGBA, gl.UNSIGNED_BYTE, texArr);
});
var img = document.getElementById('logo');
time("texImage2DHTML", function() {
for (var i=0; i<100; i++)
gl.texImage2D(gl.TEXTURE_2D, 0, img);
});
time("texSubImage2DHTML", function() {
for (var i=0; i<100; i++)
gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, img);
});
var bufs = [gl.createBuffer(), gl.createBuffer()];
var buf = bufs[0], buf2 = bufs[1];
gl.bindBuffer(gl.ARRAY_BUFFER, buf);
var bufArr = new WebGLFloatArray(bufData);
time("bufferDataNoChange", function() {
for (var i=0; i<100; i++)
gl.bufferData(gl.ARRAY_BUFFER, bufArr, gl.STATIC_DRAW);
});
time("bufferSubDataNoChange", function() {
for (var i=0; i<100; i++)
gl.bufferSubData(gl.ARRAY_BUFFER, 0, bufArr);
});
time("bufferData", function() {
var bufArr = new WebGLFloatArray(bufData);
for (var i=0; i<25; i++)
gl.bufferData(gl.ARRAY_BUFFER, bufArr, gl.STATIC_DRAW);
});
time("bufferSubData", function() {
var bufArr = new WebGLFloatArray(bufData);
for (var i=0; i<25; i++)
gl.bufferSubData(gl.ARRAY_BUFFER, 0, bufArr);
});
var sh = new Shader(gl, 'vert-v', 'frag-v');
gl.disable(gl.DEPTH_TEST);
sh.use();
var v = sh.attrib('Vertex');
for (var i=0; i<16; i++)
gl.disableVertexAttribArray(i);
gl.enableVertexAttribArray(v);
gl.vertexAttribPointer(v, 4, gl.FLOAT, false, 0, 0);
time("verticeDraw", function() {
for (var i=0; i<100; i++)
gl.drawArrays(gl.TRIANGLES, 0, 256*256);
gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
});
gl.bindBuffer(gl.ARRAY_BUFFER, buf2);
gl.bufferData(gl.ARRAY_BUFFER, bufArr, gl.STATIC_DRAW);
time("verticeDrawC", function() {
for (var i=0; i<100; i++) {
gl.bindBuffer(gl.ARRAY_BUFFER, (i % 2 == 0) ? buf : buf2);
gl.drawArrays(gl.TRIANGLES, 0, 256*256);
}
gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
});
// Drawing arrays with vertexAttribPointer seems to have been removed from WebGL.
/* gl.bindBuffer(gl.ARRAY_BUFFER, null);
gl.vertexAttribPointer(v, 4, gl.FLOAT, false, 0, bufArr);
time("verticeDrawVA", function() {
for (var i=0; i<100; i++)
gl.drawArrays(gl.TRIANGLES, 0, 256*256);
gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
});
time("verticeDrawVAC", function() {
for (var i=0; i<100; i++) {
gl.vertexAttribPointer(v, 4, gl.FLOAT, false, 0, bufArr);
gl.drawArrays(gl.TRIANGLES, 0, 256*256);
}
gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
});*/
sh.destroy();
sh = new Filter(gl, 'vert-t', 'frag-t');
sh.apply();
time("textureDraw", function() {
for (var i=0; i<1000; i++)
gl.drawArrays(gl.TRIANGLES, 0, 6);
gl.readPixels(0,0,1,1,gl.RGBA, gl.UNSIGNED_BYTE);
});
sh.destroy();
time("readPixels", function() {
for (var i=0; i<100; i++)
gl.readPixels(0, 0, 256, 256, gl.RGBA, gl.UNSIGNED_BYTE);
});
time("getImageData", function() {
for (var i=0; i<100; i++)
gl.getImageData(0, 0, 256, 256);
});
gl.bindTexture(gl.TEXTURE_2D, null);
gl.bindBuffer(gl.ARRAY_BUFFER, null);
bufs.forEach(function(buf){ gl.deleteBuffer(buf) });
gl.deleteTexture(tex);
}
Tests.endUnit = function(gl) {
}
</script>
<script id="vert-v" type="x-shader/x-vertex">
#version 120
attribute vec4 Vertex;
void main()
{
gl_Position = Vertex;
}
</script>
<script id="frag-v" type="x-shader/x-fragment">
#version 120
void main()
{
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
</script>
<script id="vert-t" type="x-shader/x-vertex">
#version 120
attribute vec3 Vertex;
attribute vec2 Tex;
varying vec2 texCoord0;
void main()
{
gl_Position = vec4(Vertex, 1.0);
texCoord0 = Tex;
}
</script>
<script id="frag-t" type="x-shader/x-fragment">
#version 120
uniform sampler2D Texture;
varying vec2 texCoord0;
void main()
{
gl_FragColor = texture2D(Texture, texCoord0);
}
</script>
<style>canvas{ position:absolute; }
img{ display:none; }</style>
</head><body>
<h3>100x 256x256x4 texture upload with texImage2D (26.2MB total)</h3>
<p id="texImage2D"></p>
<h3>100x 256x256x4 texture upload with texSubImage2D (26.2MB total)</h3>
<p id="texSubImage2D"></p>
<h3>100x 256x256x4 texture upload with texImage2DHTML (26.2MB total)</h3>
<p id="texImage2DHTML"></p>
<h3>100x 256x256x4 texture upload with texSubImage2DHTML (26.2MB total)</h3>
<p id="texSubImage2DHTML"></p>
<h3>100x 256x256x4 readPixels (26.2MB total)</h3>
<p id="readPixels"></p>
<h3>100x 256x256x4 getImageData (26.2MB total)</h3>
<p id="getImageData"></p>
<h3>25x 256x256x4 float bufferData (6.6MB total)</h3>
<p id="bufferData"></p>
<h3>25x 256x256x4 float bufferSubData (6.6MB total)</h3>
<p id="bufferSubData"></p>
<h3>100x 256x256x4 float bufferData, reuse WebGLFloatArray (26.2MB total)</h3>
<p id="bufferDataNoChange"></p>
<h3>100x 256x256x4 float bufferSubData, reuse WebGLFloatArray (26.2MB total)</h3>
<p id="bufferSubDataNoChange"></p>
<h3>100x 256x256 vert VBO draw</h3>
<p id="verticeDraw"></p>
<h3>100x 256x256 vert VBO draw, change VBO after each draw</h3>
<p id="verticeDrawC"></p>
<!--<h3>100x 256x256 vert vertex array draw</h3>
<p id="verticeDrawVA"></p>
<h3>100x 256x256 vert vertex array draw, change array after each draw</h3>
<p id="verticeDrawVAC"></p>-->
<h3>1000x 256x256 texture draw</h3>
<p id="textureDraw"></p>
<canvas id="gl" width="256" height="256"></canvas>
<img id="logo" src="" width="256" height="256">
</body></html>