primecount
primecount is a command-line program and C/C++ library that counts the primes below an integer x ≤ 1031 using highly optimized implementations of the combinatorial prime counting algorithms.
primecount includes implementations of all important combinatorial prime counting algorithms known up to this date all of which have been parallelized using OpenMP. primecount contains the first ever open source implementations of the Deleglise-Rivat algorithm and Xavier Gourdon's algorithm (that works). primecount also features a novel load balancer that is shared amongst all implementations and that scales up to hundreds of CPU cores. primecount has already been used to compute several prime counting function world records.
Build instructions
You need to have installed a C++ compiler and CMake. Ideally primecount should be compiled using a C++ compiler that supports both OpenMP and 128-bit integers (e.g. GCC, Clang, Intel C++ Compiler).
cmake .
make -j
sudo make installBinaries
Below are the latest precompiled primecount binaries for Windows, Linux and macOS. These binaries are statically linked and require a CPU which supports the POPCNT instruction (2008 or later).
- primecount-6.1-win64.zip, 582 kB
- primecount-6.1-linux-x64.tar.xz, 848 kB
- primecount-6.1-macOS-x64.zip, 396 kB
- Binaries with backup functionality are available here
Usage examples
# Count the primes below 10^14
primecount 1e14
# Print progress and status information during computation
primecount 1e20 --status
# Count primes using Meissel's algorithm
primecount 2**32 --meissel
# Find the 10^14th prime using 4 threads
primecount 1e14 --nth-prime --threads=4 --timeCommand-line options
Usage: primecount x [options]
Count the number of primes less than or equal to x (<= 10^31).
Options:
-d, --deleglise-rivat Count primes using the Deleglise-Rivat algorithm
-g, --gourdon Count primes using Xavier Gourdon's algorithm.
This is the default algorithm.
-l, --legendre Count primes using Legendre's formula
--lehmer Count primes using Lehmer's formula
--lmo Count primes using Lagarias-Miller-Odlyzko
-m, --meissel Count primes using Meissel's formula
--Li Approximate pi(x) using the logarithmic integral
--Li-inverse Approximate the nth prime using Li^-1(x)
-n, --nth-prime Calculate the nth prime
-p, --primesieve Count primes using the sieve of Eratosthenes
--phi <X> <A> phi(x, a) counts the numbers <= x that are not
divisible by any of the first a primes
--Ri Approximate pi(x) using Riemann R
--Ri-inverse Approximate the nth prime using Ri^-1(x)
-s, --status[=NUM] Show computation progress 1%, 2%, 3%, ...
Set digits after decimal point: -s1 prints 99.9%
--test Run various correctness tests and exit
--time Print the time elapsed in seconds
-t, --threads=NUM Set the number of threads, 1 <= NUM <= CPU cores.
By default primecount uses all available CPU cores.
-v, --version Print version and license information
-h, --help Print this help menu
Advanced options
Advanced options for the Deleglise-Rivat algorithm:
-a, --alpha=NUM Set tuning factor: y = x^(1/3) * alpha
--P2 Compute the 2nd partial sieve function
--S1 Compute the ordinary leaves
--S2-trivial Compute the trivial special leaves
--S2-easy Compute the easy special leaves
--S2-hard Compute the hard special leaves
Advanced options for Xavier Gourdon's algorithm:
--alpha-y=NUM Set tuning factor: y = x^(1/3) * alpha_y
--alpha-z=NUM Set tuning factor: z = y * alpha_z
--AC Compute the A + C formulas
--B Compute the B formula
--D Compute the D formula
--Phi0 Compute the Phi0 formula
--Sigma Compute the 7 Sigma formulas
Benchmarks
| x | Prime Count | Legendre | Meissel | Lagarias Miller Odlyzko |
Deleglise Rivat |
Gourdon |
| 1010 | 455,052,511 | 0.02s | 0.01s | 0.00s | 0.00s | 0.00s |
| 1011 | 4,118,054,813 | 0.02s | 0.01s | 0.01s | 0.01s | 0.01s |
| 1012 | 37,607,912,018 | 0.09s | 0.05s | 0.02s | 0.01s | 0.01s |
| 1013 | 346,065,536,839 | 0.39s | 0.19s | 0.05s | 0.03s | 0.02s |
| 1014 | 3,204,941,750,802 | 2.24s | 0.96s | 0.16s | 0.12s | 0.07s |
| 1015 | 29,844,570,422,669 | 14.58s | 5.96s | 0.63s | 0.38s | 0.21s |
| 1016 | 279,238,341,033,925 | 111.81s | 42.91s | 2.83s | 1.59s | 0.76s |
| 1017 | 2,623,557,157,654,233 | 938.07s | 352.39s | 12.70s | 4.72s | 2.83s |
| 1018 | 24,739,954,287,740,860 | 8,268.52s | 3,144.72s | 57.31s | 18.96s | 10.77s |
| 1019 | 234,057,667,276,344,607 | NaN | NaN | NaN | 89.02s | 45.56s |
| 1020 | 2,220,819,602,560,918,840 | NaN | NaN | NaN | 385.61s | 188.70s |
| 1021 | 21,127,269,486,018,731,928 | NaN | NaN | NaN | 1,652.66s | 800.57s |
| 1022 | 201,467,286,689,315,906,290 | NaN | NaN | NaN | 7,355.69s | 3,260.95s |
The benchmarks above were run on a system with an Intel Xeon Platinum 8275CL CPU from 2019 using 8 CPU cores (16 threads) clocked at 3.00GHz. Note that Jan Büthe mentions in [11] that he computed pi(1025) in 40,000 CPU core hours using the analytic prime counting function algorithm. Büthe also mentions that by using additional zeros of the zeta function the runtime could have potentially been reduced to 4,000 CPU core hours. However using primecount and Xavier Gourdon's algorithm pi(1025) can be computed in only 460 CPU core hours on an AMD Ryzen 3950X CPU!
Performance tips
primecount binaries built using the Clang compiler scale significantly better than
primecount binaries built using GCC on PCs and servers with a large number of CPU
cores. Unfortunately the primecount binaries that are offered for download are built
using an old version of GCC that supports static linking of OpenMP. Hence if you
build primecount from source I recommend using Clang. Also if you don't care about
portability I recommend using the -march=native compiler option to build a
primecount binary that is optimized for your CPU.
CXX=clang++ CXXFLAGS="-march=native" cmake .
make -jBy default primecount scales nicely up until 1020 on current x64 CPUs. For larger values primecount's large memory usage causes many TLB (translation lookaside buffer) cache misses that significantly deteriorate primecount's performance. Fortunately the Linux kernel allows to enable transparent huge pages so that large memory allocations will automatically be done using huge pages instead of ordinary pages which dramatically reduces the number of TLB cache misses.
# Enable transparent huge pages until next reboot
sudo bash -c 'echo always > /sys/kernel/mm/transparent_hugepage/enabled'Algorithms
| Legendre's Formula | |
| Meissel's Formula | |
| Lehmer's Formula | |
| LMO Formula |
Up until the early 19th century the most efficient known method for
counting primes was the sieve of Eratosthenes which has a running time of
operations. The first improvement to this bound was Legendre's formula
(1830) which uses the inclusion-exclusion principle to calculate the
number of primes below x without enumerating the individual primes.
Legendre's formula has a running time of
operations and uses
space. In 1870 E. D. F. Meissel improved Legendre's formula by setting
and by adding the correction term
.
Meissel's formula has a running time of
operations and uses
space. In 1959 D. H. Lehmer extended Meissel's formula and slightly improved the running time to
operations and
space. In 1985 J. C. Lagarias, V. S. Miller and A. M. Odlyzko published a new
algorithm based on Meissel's formula which has a lower runtime complexity of
operations and which uses only
space.
primecount's Legendre, Meissel and Lehmer implementations are based on Hans Riesel's book [5], its Lagarias-Miller-Odlyzko and Deleglise-Rivat implementations are based on Tomás Oliveira's paper [9] and the implementation of Xavier Gourdon's algorithm is based on Xavier Gourdon's paper [7]. primecount's implementation of the special leaves formula is different from the algorithms that have been described in any of the combinatorial prime counting papers so far. Instead of using a binary indexed tree for counting which is very cache inefficient primecount uses a linear counters array in combination with the POPCNT instruction which is more cache efficient and much faster. The Special-Leaves.md document contains more information.
Fast nth prime calculation
The most efficient known method for calculating the nth prime is a
combination of the prime counting function and a prime sieve. The idea
is to closely approximate the nth prime (e.g. using the inverse
logarithmic integral
or the inverse Riemann R function
)
and then count the primes up to this guess using the prime counting
function. Once this is done one starts sieving (e.g. using the
segmented sieve of Eratosthenes) from there on until one finds the
actual nth prime. The author has implemented
primecount::nth_prime(n)
this way (option: --nth-prime), it finds the nth prime in
operations using
space.
C API
Include the <primecount.h> header to use primecount's C API.
All functions that are part of primecount's C API return -1 in case an
error occurs and print the corresponding error message to the standard error
stream.
#include <primecount.h>
#include <stdio.h>
int main()
{
int64_t pix = primecount_pi(1000);
printf("primes below 1000 = %ld\n", pix);
return 0;
}C++ API
Include the <primecount.hpp> header to use primecount's C++ API.
All functions that are part of primecount's C++ API throw a
primecount_error exception (which is derived from
std::exception) in case an error occurs.
#include <primecount.hpp>
#include <iostream>
int main()
{
int64_t pix = primecount::pi(1000);
std::cout << "primes below 1000 = " << pix << std::endl;
return 0;
}Bindings for other languages
primesieve natively supports C and C++ and has bindings available for:
| Common Lisp: | cl-primecount |
| Haskell: | hprimecount |
| Python: | primecount-python |
| Rust: | primecount-rs |
Many thanks to the developers of these bindings!