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Abstract

We study a susceptible-exposed-infected-recovered (SEIR) model considered by
Aguas et al. (In: Herd immunity thresholds for SARS-CoV-2 estimated from unfolding
epidemics, 2021), Gomes et al. (In: J Theor Biol. 540:111063, 2022) where individuals
are assumed to differ in their susceptibility or exposure to infection. Under this hetero-
geneity assumption, epidemic growth is effectively suppressed when the percentage
of the population having acquired immunity surpasses a critical level - the herd immu-
nity threshold - that is lower than in homogeneous populations. We derive explicit
formulas to calculate herd immunity thresholds and stable configurations, especially
when susceptibility or exposure are gamma distributed, and explore extensions of the
model.
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1 Introduction

Understanding and predicting the dynamics and control of infectious diseases relies on
representative models, whether conceptual or mathematical. Mathematical modelling
was established in infectious diseases over a century ago, with the seminal works of
Ross (1916), Ross and Hudson (1917), Kermack and McKendrick (1927) and others.
Propelled by the discovery of aetiological agents for infectious diseases, and the germ
theory, models have focused on the complexities of pathogen transmission and evolu-
tion (Heesterbeek 2015). It has recurrently been noted for over a century, however, that
these models tend to overpredict transmission potential and overestimate the impact
of control measures which may be explained by limitations in capturing the effects of
heterogeneity (Kermack and McKendrick 1927; McKendrick 1939; Gart 1968, 1971,
Ball 1985; Anderson et al. 1986; Pastor-Satorras and Vespignani 2001; Miller et al.
2012; Gomes et al. 2022).

Here we analyze a set of susceptible-exposed-infected-recovered (SEIR) models
presented in Gomes et al. (2022), Aguas et al. (2021) where each of the compartments
S, E, I and R is expanded into continuum many compartments S(x), E(x), I (x) and
R(x), where x € R™ is a trait that varies among individuals. Specifically we model a
situation where each individual has a level of susceptibility or exposure (connectivity)
X, starting in compartment S(x) and staying within the compartments S(x), E(x),
I(x) and R(x) the whole time. This individual may infect or be infected by others
irrespective of their trait value x assuming random mixing (Anderson and May 1991,
Diekmann et al. 2013). We will consider two types of models:

A variable susceptibility case where the susceptibility of an individual at level x
is proportional to x, or, in other words, if we compare an individual at level x and an
individual at level y, the one at level x is x /y times more likely to get infected than the
one with susceptibility y. We may interpret this as variation in biological susceptibility
which may be due to genetics, epigenetics or life history.

A variable connectivity case where the propensities for an individual at level x to
acquire infection and transmit to others are both proportional to x, or, in other words,
if we compare an individual at level x and an individual at level y, the one at level
x is x/y times more likely to get infected than the one in level y and also x/y times
more likely to infect someone else once infected. This is interpreted as individuals
with many contacts being both more likely to get infected and to infect others.

For each x, we have a system of the form:

0] - [E0] -~ 100 = (7]

where A is the force of infection which is formulated differently in the variable sus-
ceptibility or the variable connectivity cases:

Variable susceptibility: A =8 / I(x) dx,

Variable connectivity: A =pf / x I(x)dx.
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Note that A varies with time, as it depends on the time-dependent infected population.
The dynamics of compartments S(x), E(x), I(x) and R(x) are governed by the
infinite system of ordinary differential equations:

dS(x)

o = —Ax S(x), ey
di?) — A x S(x) —8 E(x), )
dl(x)
T =6 E(x)—y I(x), (3)
RO _ 1) 4
a7 '

We assume that the system has been scaled such that the total population is 1. The
initial conditions for variables S(x, t), E(x, t), I (x,t) and R(x, t), satisfy S(x,0) =
(1—¢€)gx), E(x,0) =€ g(x) and I(x,0) = R(x,0) = 0, where 0 < ¢ < 11is
a small scalar to seed the epidemic, and ¢ (x) is a probability density function with
mean | and coefficient of variation v:

/xq(x) dx =1 and \//(x — D2g(x) dx = v. 5)

We use S(¢) to denote the integral over all susceptibility levels, S(x, t), forx € RT.
We thus have S(r) = f0+oo S(x, t)dx. Same with E(z), I(t) and R(¢).

We will use the first three moments of S(x, t), that we denote S(¢), §(t) and §(t):
S(t) = / S(x,t) dx, S(r) = /xS(x, t) dx and g(t) = /sz(x, t) dx. (6)

When infection is absent (¢ = 0), we have S(0) = 1, S(0) = 1 and S(0) = 1 + v2.
But note that S(x, r) is not a probability density function for € > 0 as S(¢) becomes
less than 1. The quotient S (x, #)/S(¢) as a function of x for fixed ¢ will be a probability
density function for € > 0 and all ¢ with first and second moments S(1) /S(t) and

S(t)/S(r) which decrease over time. When the initial configuration ¢ (x) is a gamma
distribution, all the distributions S(x, t)/S(¢) are also gamma with the same coefficient
of variation v but with lower mean (see Appendix A), an argument which enables
mathematical derivations to advance further when traits are assumed to be gamma
distributed (Novozhilov 2008).

Similarly, we define the moments R(¢), I_?(t) and ﬁ(t) for the recovered compartment,
and the same with E and |. Notice for instance that A(¢) is written as S I(z) and 8 1(r)
in the variable susceptibility and variable connectivity cases, respectively.

Here we describe key epidemiological quantities when system of equations (Egs. 1—
4) is adopted. The basic reproduction number Ry is the average number of secondary
infections generated by an infected individual in a totally susceptible population. It
depends on characteristics of both the pathogen and the host population. When this
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number is below 1 no epidemics are expected. When R is above 1, however, the intro-
duction of infection in a virgin population is expected to generate an epidemic. This
is followed by almost exponential growth in cumulative infections which decelerates
gradually as susceptibles are depleted. The effective reproduction number R is a
time-dependent quantity loosely defined as the number of secondary infections gener-
ated by a typical infected individual when the susceptibility of the population is as at
time 7. Regr coincides with Ry at the beginning of an epidemic (when the population
is totally susceptible) but declines as individuals are removed from the susceptible
pool by infection and immunity. As Refr crosses 1 towards lower values, the epi-
demic subsides and future reintroductions of infection are not expected to generate
new outbreaks as long as population immunity is maintained.

We derive formulas for the effective reproduction number Reg and the herd immu-

nity threshold  in terms of moments S, Sand S, of the susceptible population. When

¢(x) is a gamma distribution, S and S can be formulated in terms of S and we get
an exact formula for H in terms only of the basic reproduction number Ry and the
coefficient of variation v. In this case we can also reduce the infinite system (Eqgs. 1-4)
to a finite system of ordinary differential equations in S, E, | and R with nonlinear
transmission (exactly when the variable trait is susceptibility and approximately in
the case of variable connectivity). In the case of variable connectivity, we provide an
exact derivation of a finite system in the variables 3, E, Tand R.
In the variable susceptibility case we will get that:

Ry = é and Rep = — S,
14

X |

and consequently, Reff = Ro S. This implies that the population is above the herd
immunity threshold when S < 1/Ro. When we assume that ¢(x) is a gamma dis-
tribution, the proportion of individuals that have been infected by the time the herd
immunity threshold is reached is deduced as:

1

H=1-R,"", 7)

and system (Eqgs. 1-4) can be reduced to:

ds 2

7 |Sl+l) , 8
7 B (8)
dE

Ezms””z—aE, ©
dl

S =E—yL (10)
dR

— =yl (1D
dt

These equations are exact.
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In the variable connectivity case we will get that:

s,

fRoz(1+u2)é and fReﬁ:ﬁ
1% %

and consequently, Reir = Ro/(1 —l—_u2) E This implies that the population is above

the herd immunity threshold when S< (142 /Ro. When we assume that g (x) is a
gamma distribution, the proportion of individuals that have been infected by the time
the herd immunity threshold is reached is deduced as:

2

H=1-R,"". (12)

In (Egs. 28-31), we derive a closed system for the variable connectivity model on the
variables S, E, 1 and R. But this does not directly allow the model to be fitted to incidence
data provided by routine surveillance. For finding equations that determine the system
only on the variables S, E, | and R, in the variable connectivity case we need to make
an approximation as detailed in Appendix B. The resulting system (Egs. 22-25) is
shown to approximate the original (Eqgs. 1-4) when the infectious period is small as
in acute infectious diseases.

In Fig. 1 we provide graphical representations for the H formulas corresponding to
the basic model introduced in this section (variable susceptibility in green and variable
connectivity in blue), showing a monotonic decrease as the coefficient of variation v
increases (Gomes et al. 2022).

In Sects. 2 and 3 we provide general derivations for effective reproduction numbers
and herd immunity thresholds, while Sect. 4 is focussed on special cases when traits
x are gamma distributed. Towards the end of the paper, we analyze two extensions
of the basic model. In Sect. 5, we consider a model with reinfection where immunity
after recovery is not fully protective but only partially. In Sect. 6, we consider a
model with a carrier state, which (Gomes et al. 2022; Aguas et al. 2021) apply to the
coronavirus disease (COVID-19) pandemic. There, the exposed compartments are not
simply latent but a carrier state where individuals are infectious but to a lesser degree
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than individuals in the fully infectious compartment. In each case we derive formulas
for herd immunity thresholds especially when the initial trait distribution is gamma.

2 Effective reproduction number

The effective reproduction number at time t is defined as the number of secondary
infections caused by a typical infected individual over their entire infectious period in
an idealized situation, as described below.

Before proceeding with its derivation we need to make two considerations. The first
concerns the evolving susceptible pool. We assume that during the period in which
an individual is contagious, the density of susceptibles is frozen in time. This means
that we disregard the fact that since the susceptible population declines, this individual
infects less at the end than at the beginning of their infection. In acute infections, the
decline in the susceptible population is usually slow compared to the rate of recovery
from infection so, in practice, the impact of the assumption is negligible. Moreover,
when Ry is used to analyze stable configurations, such as in the derivation of herd
immunity thresholds, the assumption holds and hence has no effect on the results.
This consideration pertains to both variable susceptibility and variable connectivity
models.

The second concerns the infectivity profile of the infected population at time #. We
define:

Refr at time ¢ as the average number of secondary infections generated by an
individual who becomes infected at time t. This average is taken over the pool
of individuals that go from S to E at time .

When Repr < 1, infection is not expected to invade an infection-free population.
Further details on this concept are discussed in Appendix B. In the remaining of this
section we derive explicit formulas for Rey.

First, the variable susceptibility case: Consider an individual who gets infected
(more precisely, exposed and consequently infected) at time ¢ (i.e., moves from S to
E at time ¢). This individual will eventually move to | and spend on average 1/y days
there. While in I, the individual will infect an average of B [y S(y, t) dy others per
day. We thus get:

Refi(t) = b /y S(y, 1) dy = b S@). 13)
14 14
In particular, we get:
Ro = é (14)
4
and consequently:
Refi (1) = Ro S(1). (15)
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Second, the variable connectivity case: Consider again an individual who gets
infected at time 7. It now matters what trait value x this individual has because it
determines how many others they will infect.

Let p(x,t) be the density function measuring the probability at time ¢ that this
individual has connectivity level x. The probability of becoming infected (i.e., of
entering the E compartment) is xA(#). Thus, the value of p(x, ) is proportional to
xS(x,1):

S(x, 1)

plx, 1) =x 50

As above, an individual who enters E will eventually move to |, spend on average 1/y
days there, and infect an average of 8 [ y S(y, 7) dy others per day. We thus get:

Rete(t) = / B (/y S(y, 1) dY) x p(x,t)dx

,3 /' x2 S(x, t) ,B =
=St 16
(1) ———— 0 y (0. (16)

In particular, we get:
Ro=3L =+ L, (a7
14 14
and consequently:

Refi(t) = T2 S@). (18)

Expressions for Ry, such as (Eq. 14) and (Eq. 17), have been known for decades
(Anderson and May 1991; Diekmann et al. 2013; Woolhouse et al. 1997). Worth high-
lighting, however, is that disproportionately less attention has been given to variable
susceptibility than to variable connectivity due to the coefficient of variation v not
affecting the formula explicitly in the former case but only in the latter. It will be
important to realise, however, that variation in susceptibility is just as impactful when
we consider quantities such as herd immunity thresholds and inferences of Ry from
observational data (Gomes et al. 2022; Aguas et al. 2021).

3 Herd immunity threshold

Suppose we have a population with no infected individuals, so that all individuals
are either susceptible or recovered. The population is said to be at or above the herd
immunity threshold for a pathogen if its susceptibility profile to that pathogen is such
that a new introduction of infection (i.e., a small increase in E or |) does not trigger
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an outbreak. By inspection on the differential equations (Eqgs. 1-4), we see that a
configuration with E(x) = I (x) = 0 satisfies this condition if and only if

Retr < 1.

In the variable susceptibility case it is equivalent to formulate the herd immunity
threshold in terms of suppression of future outbreaks (as adopted here) or in terms of
an unmitigated epidemic passing its peak infection prevalence. With variable connec-
tivity, however, this equivalence does not hold as explained in Sect. 2.

A configuration with no infected individuals is then said to be at the herd immu-
nity threshold if and only if Refr = 1. In SEIR models with no individual variation,
configurations with no infected individuals are determined by the values of S and
R = 1 — S, and the herd immunity threshold is defined as the value of 1 — S at the
unique configuration with Regr = 1. This value is well-known to be equal to 1 — 1/Rg
(Anderson and May 1991; Diekmann et al. 2013). With individual variation in suscep-
tibility or exposure to infection, however, there are many configurations which satisfy
Retf = 1. One such configuration is given by S(x) = ¢(x)/Rg for all x. This could
be obtained, for instance, by vaccinating a proportion 1 — 1/R( of the total popu-
lation randomly without taking into account susceptibility or exposure levels (Fine
et al. 2011). When immunity is acquired naturally, however, individuals with higher
susceptibility or exposure tend to be infected earlier and the herd immunity threshold
is reached before the susceptible population is as low as 1 /R of the total. For now, let
us retain that for the basic heterogeneous models considered here the herd immunity
threshold is reached when S = 1/Ry in the variable susceptibility case (Eq. 15) and

E/(l + %) = 1/R with variable connectivity (Eq. 18).
Next, we will see how we can derive S(¢) and S(¢) under the assumption that the
initial distribution is gamma.

4 Case of the gamma distribution
Here we study how the distribution of the trait x within the susceptible compartment
evolves generally, and then specify to the case where individual variation in suscep-

tibility or connectivity is gamma distributed. We also refer to related work in Neipel
et al. (2020), Novozhilov (2008).

4.1 Evolution of the susceptible compartment

From the SEIR equation for dS(x, t)/dt we get:

1 dSG,1)

S di =% M)
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Integrating with respect to r we get:
t
Sx, 1) =q(x) e k \where k; = / AMu) du. (19)
0

This holds in both variable susceptibility and variable connectivity models (with
different values for k;). It also holds in the cases with reinfection and with carrier state
considered in Sects. 5 and 6.

4.2 Gamma distributed traits

The key observation here is that since S(x, 1) = g(x) e™* k we have that S(x, 1)/S(r)
remains a gamma distribution at all values of 7. This enables the derivations in
Appendix A of explicit formulas for the moments S (Eq. A.1) and S (Eq. A.2) in
terms of S and the shape parameter v, when susceptibility or connectivity are gamma
distributed.

Using that the coefficient of variation is v = 1/,/a we rewrite the respective
formulas as:

S(1) =S, (20)
S(1) = (1 +v2) S(0)!+2°. Q1)

To derive the reduced system in the variable susceptibility case (Egs. 8—11) we
integrate the equations in (Eqs. 1-4) over the susceptibility domain and apply (Eqgs. 13
and 20) to get:

dsS

L _B15= g5+, 22
- B B (22)
E -

Z_tzﬂIS—SEzﬂIS”"Z—SE, (23)
dl

— =8E—yI 24
T YAk (24)
R_ (25)
a7t

This closed system in S, E, | and R has been used to fit epidemic curves of COVID-19
(Gomes et al. 2022; Aguas et al. 2021). Recalling that the herd immunity threshold H
is 1 —S(r) at the time  when Refr = 1 and that Reg(r) = Ro S(r) (Eq. 15), we get that
Ry '=51) = S(t)1+”2 at the herd immunity threshold when susceptibility is gamma
distributed. Hence:

1

H=1-R, """ (26)
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In the variable connectivity case we have that Refi(t) = Ro/(14+1?) g(t) (Eq. 18).
Thus, when Regr = 1, we get iRal =St)/(1+v?) = S(t)“‘z"2 when connectivity is
gamma distributed. Hence:

_ 1

H=1-R, """, 27)

Multiplying the original (Egs. 1-4) by x, integrating over the connectivity domain
and applying (Egs. 16 and 21) we get:

2

dg _= _ 14207
E:—ﬁlS:—(l—i—vz)ﬂlSl”Z, (28)
dE = _ _ 1422 _
E:ﬁlS—(SE:(l—}—vz),BISHvz—8E, (29)
dl _ .

EZBE_’”’ (30)
dR -

E:yl, (31)

Mathematically this is a tractable closed system in §, E, I and R. However, these
variables are not convenient for practical data fitting and parameter estimation. In
Appendix B we propose an approximation in the variables S, E, | and R.

5 Model with reinfection

Here we consider an extension of the model considering that immunity after recovery
is not fully protective, but only partially. A factor o, with 0 < o < 1, is added to
represent the quotient of the probability of getting reinfected after recovery over the
probability of getting infected while fully susceptible.

The model is represented diagrammatically as:

[509] 2 (B~ [100] "~ [0
\/

TXA

with A as in the basic models (without reinfection) studied above. The extended model
is given by the equations:

dS(x) _

T A x Sx), (32)
diix) =Ax (Sx) +0 R(x) =8 E(), 9
dI(X) -5 E(X) —y I()C), (34)

dt
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dR(x)
T =y Il(x)—0 Ax R(x). 35)

The system exhibits newer dynamics in comparison with the basic case. Depending
on whether o is below or above 1/Rg (known as the reinfection threshold (Gomes
et al. 2004, 2016)) we get that either the disease dies out after a while and a certain
proportion of the population never gets infected, or continues endemically and every
individual is eventually infected and reinfected repeatedly.

5.1 Effective reproduction number

The basic reproduction number is calculated exactly, as in the absence of reinfection,
but the effective reproduction now depends not only on the distribution of S(x, ¢), but
also on the distribution of R(x, t). When we consider configurations with no infected
individuals, we will have that R(x, 1) = g(x) — S(x, ) and will be able to express
Res(?) in terms of S(x, 7) only.
The formulas for the effective reproduction number R at time ¢ are:
o Resr(t) = (B/y) (§(t) + O'E(l)) in the variable susceptibility case, and
o Reir(t) = (B/y) (§(t) + aﬁ(t)) in the variable connectivity case.

The derivation of these formulas is essentially as the derivations in Sect. 2, with
two differences. First, each individual with trait value x infects 8(S(r) + oR(z)) or
ﬂx(g(t) + Ulf{(t)) others per day spent in I, in the respective cases, instead of ,3§(t)
or ﬂxé(t). Second, when we consider an individual that gets infected in the variable
connectivity case, the probability that this individual has trait value x is proportional
to x(S(x, 1) + o R(x,t)) instead of xS(x, 1).

5.2 Herd immunity threshold

Recall that a configuration with no infected individuals is at or above the herd immunity
threshold if and only if Regr < 1. As_suming t}_lat no one is infected, that is R(x) =
q(x) — S(x), we get R=1—-SandR = a—g, wherea = fxzq(x) dx = 1 +12.
We can then understand the configurations at the herd immunity threshold in terms of
SandS.

In the variable susceptibility case a configuration with no infected individuals is
at the herd immunity threshold if and only if S + o (1 — S) = 1/Rp, and hence:

-1
Ry —o

1—0

S =

In the variable connectivity case a configuration with no infected individuals is

at the herd immunity threshold if and only if (S + o(@—9)/(4v%) = 1/Rg, and
hence:

= fR_l—
S=(1+U2)%O‘O’
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5.3 Reinfection threshold
The formulas above require:
—1
o <Ry

That is, the reinfection factor o has to be below ng 1, a critical value known as the
reinfection threshold (Gomes et al. 2004, 2016). If this is verified, then all con-
figurations with no infected individuals and satisfying the conditions above (either
S= (9261 —0)/(1—o0) orS = 1+ vz)(ﬂz(j] — 0)/(1 — o) depending on the case)
are herd immunity threshold configurations in the sense that when susceptibility is at
that level or lower, infection reintroductions will not trigger new outbreaks as R will
not increase above 1.

If the reinfection factor is so high that the population is above the reinfection
threshold, R will be greater than 1 in any such configurations, so there will not be
any configuration with no infected individuals which is at the herd immunity threshold.
This implies that there will always be a portion of the population infected, and hence
that the population of susceptible individuals will eventually be completely depleted.
The infection becomes endemic. The equilibrium configuration will now have S(x) =
0 for all x. In these situations the level of endemicity will depend on how much
resistance the population is able to mount and maintain.

5.4 Case of the gamma distribution

Recall from Sect. 3 that, when the initial distribution g (x) is gamma, we get that
S(x, 1)/ S(t) remains a gamma distribution for all 7, and that S(1) = S(t)H'”2 and
S@) = (1+1v?) S(I)H‘z”z. We can then obtain the values of S(¢) at the time when the
herd immunity threshold is reached, and then calculate H as 1 — S(¢) for that particular
t.

In the variable susceptibility case we get:

1

7—[:1_<fRO]—_0>Hv2. (36)

1—0o

In the variable connectivity case we get:

R o ”ﬁ
H=1-—|—22—~ ) (37)

1—0o

Curves assuming a selection of values for o are represented graphically in Fig. 2.
Note the critical behaviour at the reinfection threshold (o = 1/Rg) in red, which
separates the regime where individual immunity is sufficiently potent for the herd
immunity threshold to be achievable from the regime where endemicity will establish.
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100 Variable susceptibility Variable connectivity

Herd immunity threshold (H)

Coefficient of variation (v) Coefficient of variation (v)

Fig. 2 Herd immunity threshold with reinfection. Curves correspond to the SEIR model with reinfection
(Egs. 32-35) assuming Ry = 3 and gamma distributed susceptibility (left, Eq. 36) or connectivity (right,
Eq. 37). Efficacy of naturally acquired immunity is captured by a reinfection parameter o, potentially
ranging between o = 0 (100% efficacy) and o = 1 (0 efficacy). Five values of the reinfection parameter
are depicted: o = 0 (black); o = 0.1 (green); o = 0.2 (blue); o = 0.3 (magenta); and o = 1/R (red).
Above o = 1/Rq (reinfection threshold Gomes et al. 2004, 2016) the infection becomes stably endemic
and there is no herd immunity threshold (colour figure online)

6 Model with a carrier state

In applications to the COVID-19 pandemic (Gomes et al. 2022; Aguas et al. 2021) the
exposed compartments are not simply a latent state but a carrier state where individuals
are infectious but to a lesser degree than those in the fully infectious compartment.
Building on the reinfection model (Eqgs. 32-32) we now introduce parameter p < 1
to denote the ratio of infectiousness between exposed and fully infectious individuals.
What changes is the force of infection A:

Variable susceptibility:  A(f) = B / PE(x,t) 4+ I(x,t) dx = B (pE() 4+ 1(2)),

Variable connectivity:  A(f) = f8 / x(pE(x, 1)+ I(x,1)) dx = B (pE(t) + 1(1)).

The basic and effective reproduction numbers become:

1
Variable susceptibility: Ro = 8 (g + —) and
Y

1\ - _
Refi (1) = B (% + ;) (S(1) + oR(1)),

1
Variable connectivity: Ry = (1 4 Y <§ + —) and
4

1 = =
Refe(t) = B (% + ;) (S(t) + oR()).

The calculation of the effective reproduction number Regr is slightly different. The
difference is that now we have to add the time an individual is incubating the infection
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in E to the infectious period, multiplied by the factor p. Since the average time an
individual spends in E is 1/§ we get:

o Resr(t) = B(p/8+1/y) (é(t) + UE(Z)) in the variable susceptibility case, and
o Rei(t) = B(p/8 + 1/v) (S(t) + oR(1)) in the variable connectivity case,

where g(t) and §(t) are the moments of S(x, t) defined above, and the same with
R(x,1).

In particular, we get Ry = B(p/8 + 1/y) and Ry = (1 +v)B(p/8 + 1/y),
respectively, and Reir = Ro (S + oR) and Regp = Ro/(1 + v2) (S + oR). Finally,
we obtain the same formulas for the herd immunity threshold in terms of Ry and v
(Sect. 3, without reinfection) or more generally Rg, v and o (Sect. 5, with reinfection).

7 Discussion

After completion of this work, similar ideas for capturing individual variation with
mean-field epidemic models were elaborated (Britton et al. 2020; Di Lauro et al. 2021;
Kawagoe et al. 2021; Neipel et al. 2020; Rose et al. 2021; Tkachenko et al. 2021).
These recent developments were largely prompted by the COVID-19 pandemic. In
agreement with our results, Rose et al. (2021), Neipel et al. (2020) find that when
susceptibility is initially gamma distributed it remains so through the course of the epi-
demic, leading naturally to power-law behaviour in the force of infection (Novozhilov
2008). In addition the authors show that other initial distributions converge towards
gamma through the process of contagion. Other authors (Kawagoe et al. 2021) derive
epidemic final sizes assuming alternative distributions of susceptibility, considering
in addition that infectivity may exhibit some correlation with susceptibility (such as
in the variable connectivity models analyzed here). They compare numerical results
for gamma and lognormal distributions with those obtained using an empirical distri-
bution of individual contacts derived from cell phone geolocation data. Focussing on
variable connectivity (Britton et al. 2020; Di Lauro et al. 2021) address herd immu-
nity thresholds using age-structured compartmental models. Additionally (Di Lauro
et al. 2021) consider a variety of non-pharmaceutical intervention scenarios, empha-
sizing subtle results when interventions change the contact network. Another group of
authors (Tkachenko et al. 2021) distinguishes between persistent and transient indi-
vidual variation to highlight that only the former is subject to the kind of selection that
lowers epidemic final sizes and herd immunity thresholds.

Despite being prompted by COVID-19 none of the above references attempted to
quantify the individual variation which was under selection by the force of infection
and hence contributed to lower epidemic final sizes and herd immunity thresholds.
This is done in our associated work (Gomes et al. 2022; Aguas et al. 2021), where the
problem is inverted and selectable variation is inferred from its effects on epidemic
patterns. Although we and others had previous adopted similar approaches to other
infectious diseases (Finkenstadt and Grenfell 2000; Smith et al. 2005; Bellan et al.
2015; Corder et al. 2020) the work has been processed more cautiously during the pan-
demic due to the greater implications that estimating lower herd immunity thresholds
and epidemic final sizes might have for policies and behaviors in this context.
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The concept of herd immunity was originally developed in the context of vacci-
nation programs (Gongalves 2008; Fine et al. 2011). Defining the percentage of the
population that must be immunised to cause infection prevalence to decline, the con-
cept has provided a useful target for vaccination coverage. In hypothetical scenarios
of vaccines delivered at random and individuals mixing at random, the herd immunity
threshold is given by the simple expression (1 — Ry ! when immunity is fully protec-
tive. Concretely, for R between 2.5 and 5, this would indicate that 60-80% random
subjects would need be immunized to prevent spread of infection. This formula would
not apply, however, if vaccination programmes were designed to prioritize more con-
nected individuals, for instance (Elbasha and Gumel 2021). Similarly, it does not apply
when immunity is acquired in response to natural infection, which does not occur at
random. Individuals who are more susceptible or more exposed to infection are prone
to be infected and become immune earlier. As a result, earlier episodes contribute
disproportionately to herd immunity as they remove highly susceptible and exposed
subjects from the susceptible pool (Ferrari et al. 2006; Britton et al. 2020; Kawagoe
etal. 2021; Neipel et al. 2020; Rose et al. 2021; Gomes et al. 2022; Aguas et al. 2021).

2
In our basic models, the herd immunity threshold becomes H = 1 — Ra ASA in

2
the case of gamma distributed susceptibility, and H = 1 — R VAT with gamma

distributed connectivity (exposure), which decline sharply when coefficients of vari-
ation (v) increase from 0 to 2, remaining below 20% for more variable populations in
a particular illustration where Rg = 3 (Fig. 1). The magnitude of the decline depends
on what property is heterogeneous and how it is distributed among individuals, but the
downward trend is robust provided that acquired immunity is efficacious enough to
keep transmission below the reinfection threshold (Fig. 2) (o < Ry ! where o is the
susceptibility of individuals who have recovered relative to their respective suscepti-
bility prior to infection) (Gomes et al. 2004, 2016). In our reinfection models, herd

)l/(1+l}2)

immunity thresholds are derivedas H = 1 — ((fRa - 0)/(1—o0) in the case

)l/(l+2v2)

of gamma distributed susceptibility,and’ H = 1— ((fRa '— o) /(1 —o0) with

gamma distributed connectivity, when o < R LIt immunity is not potent enough
to keep the system below the reinfection threshold then a herd immunity threshold is
not attainable and the disease persists in stable endemicity, irrespective of individual
variation.

Finally, we stress that the herd immunity threshold () is a theoretical framework
to assess epidemic potential to the same extent that R is a theoretical framework.
Their interdependence shows that if Ry increases due to evolution of the infectious
agent, for example, so does H. Also, if new susceptibles enter the population through
birth or other processes, or if immunity wanes or is evaded by pathogen lineages, a
previously acquired herd immunity status may be lost leaving the population prone to
subsequent outbreaks. Furthermore, if transmission has a marked seasonal pattern the
same level of immunity may place the population above threshold in low season and
below threshold in high season, in a cyclical manner. Although H is not as immediately
applicable as often implied, it is a more informative measure of epidemic potential
than R given that it accounts for variation in susceptibility or exposure (v) in addition
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to average transmissibility R¢. The more accurately we know H the better we can
assess trade-offs and inform public health policy.
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Appendix A. Derivations of moments S, S and S for gamma distributed
traits

In this appendix we derive explicit formulas for S and S, in the cases of variable
susceptibility and connectively respectively, in terms of S when the traits are gamma
distributed.

We use conventional notation for the gamma probability distribution:

xa—le—ﬂx’

Gammagy g(x) =

(@)

noting that « and B are the shape and rate parameters, respectively. The notation S
clashes with the transmission coefficient which is also conventionally denoted by the
same Greek letter, but its appearance as rate parameter in this appendix ceases once we
condition our gamma distributions to having mean o/ = 1, i.e., B = «, so confusion
can be precluded.

Given an initial gamma distribution with mean 1, explicitly g(x) = Gammag o (x),
which we substitute in (Eq. 19), we get

a()l

(o)

_ o ¢ (a + k)* xaflefx(a+k1)
o + k; I'a)

S(.x, t) — aflefx(a+kx)

X

o
o
= (a n kr) - Gammag, o4k, (X).

Using the equalities [ Gammay o1, (x)dx = 1, [ x Gammay o1, (x)dx = o /(a+
ke) and [ x% Gammag, ik, (x)dx = [a(a + D]/[(« + k)*], we calculate S(t), S(t)
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and g(t):

IS

o o o
S(t) = < kz) -‘/Gammaa,oﬁkt (x)dx = <a +kz> ,
_ o o o
S(t) = <a +kz> -v/‘xGammaa,a_Hct(x)dx = <a +kz>
a a a+1
.oz—i—kt_(a—i—k,) ’

— o
S(r) = < « ) -/x2 Gammag, ¢+, (X)dx

B a \* al@+1) a \“? a+1

otk (@+k)? \a+k a

From the above we get

Q
: +

S(t) =S+, (A.1)
a+1

5(1) = S+ (A2)

Appendix B. Approximate variable connectivity model in S, E, I, R
variables

In (Egs. 28-31), we derived a closed system for the variable connectivity model on the
variables S, E, I, R. However, we would like to have a closed system on the variables S,
E, I, R, as we did in the variable susceptibility case to enable direct fitting to incidence
data (Eqs. 22-25) for parameter estimation and scenario projections. We propose a
system of approximate equations which works well when the infectious period is small
as in acute infectious diseases (Eqs. B.8-B.11 below).

The justification for the approximation is based on the assumption that the following
two quantities are very close to each other when the infectious period is small compared
to the length of the epidemic. At each time ¢ we consider the following two factors,

that we denote f(¢) and t(z)

o f(¢)is the average infectivity of a typical individual who becomes infected at time t.
In other words, this is the average value of trait x taken over the pool of individuals
that go from S to E at time .

e t(7) is the average infectivity of a typical individual who is infectious at time ¢. In
other words, this is the average value of trait x taken over the pool of individuals
that are in compartment | at time 7.

Both f and t are formulated below (Eq. B.2). The distinction between them is only
meaningful in models where infectivity varies among individuals in such a way that
those infected in different days tend to have different infectivities — this occurs in our
variable connectivity model (as infectivity is positively correlated with susceptibility,
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the selection which reduces susceptibility in the susceptible pool over time also reduces
infectivity) but not in the case of variable susceptibility (where all individuals have
the same infectivity).

Note that we use the factor f in our calculation of Refr in (Eq. 16), where we multiply
B by the average infectivity f (same as average connectivity), the average susceptibility
S, and the length of the infectious period (1/y):

Refr = = -5, (B.1)

X [
|

Let us also note that the “R-number” which was popularized in the COVID-19 pan-
demic, loosely described as the number of new infections caused by a typical individual
who is infectious at time ¢, is defined in terms of t rather than f. This more empiri-
cal notion, formulated as R; = (8/y) - t - S, is not always coincident with the basic
reproduction number Regf, introduced in textbooks as the spectral radius of the next
generation operator (Diekmann et al. 2013) and adopted in this paper. The two notions
differ when the average infectivity of individuals infected in a particular day is differ-
ent to the average infectivity of those who have been infected in another day. However,
this difference is of little consequence to variable connectivity models when the infec-
tious period is small and of no consequence when variation is in susceptibility (see
Fig. 3).
We claim that the values of f and t are given by the following formulas:

f=5/S and t=I/l (B.2)

The second equality follows from the formula for average infectivity, f (xI(x,t)/ldx,
for every time ¢. The first equality was essentially derived in Sect. 2 when we cal-
culated Reg for variable connectivity (Eq. 16). Within that calculation we had to
consider the infectivity of an individual who becomes infected at time 7, which is
equal to [ xp(x,t)dx, where p(x, 1) is the density function measuring the proba-
bility that such an individual has connectivity level x. We saw that since p(x, ) is
proportional to xS(x, t), we have that p(x,1) = xS(x, 1) /§(t). It follows then that
f(r) = fsz(x, t)/g(t)dx, for every ¢, which is the expression above.
We now can write our assumption as:

S/S AT/, (B.3)

With this we can derive the approximate closed system of equations on the variables
S, E, I, R. Observe that if we integrate the Eqs. (1)—(4) over x and use that . = g |, we
obtain

ds -
. =-BIS (B.4)
dE -

S =BIS—SE (B.5)
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Fig. 3 Effective reproduction number. Top panels show epidemic curves generated by running system
(Egs. 1-4) with explicit gamma distributed susceptibility (left) or connectivity (right). Solid curves are
unmodified epidemics while dashed show the outcome of hypothetically clearing all infections instanta-
neously on day 25 and progressing with a small infectious seed. Bottom panels show the respective Ry
values, calculated as (B/y) - S in the case of variable susceptibility and (8/y) - (/1) - S in the case of
variable connectivity, with or without the intervention on day 25. The empirical index R coincides with the
effective reproduction number Regf in the variable susceptibility case but is slightly higher when variation
is in connectivity. This is highlighted by zooming into the areas marked by black rectangles (see insets).
Parameters: Ry = 3; 8 = 1/4 per day; y = 1/3 per day; and v = 1 (colour figure online)

A sE_ (B.6)
dr v '
R _ (B.7)
a U '

Then, using that 15~15 (Eq. B.3), and that with gamma distributed traits we have
S=(1+4+v? S(t)”‘z"2 (Eq. 21), we get the approximate closed system we seek:

dS

SR Bl s, (B.8)
t

dE

A+ V2 g1+ 5, (B.9)
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Fig. 4 Epidemics with gamma distributed susceptibility or connectivity. Solid curves were generated by
running a discretized version of the infinite system (Eqs. 1-4) with explicit gamma distributed susceptibility
(green) or connectivity (blue). Dashes curves are the corresponding outputs of the reduced systems (Eqs. 22—
25) and (Eqs. B.8-B.11). Prevalences of infection (E+1) over time are depicted on the top panel and effective
reproduction numbers on the bottom. Parameters: Ry = 3; § = 1/4 per day; y = 1/3 per day; and v = 1
(colour figure online)

A _se_ ) (B.10)
dr v '
R _ (B.11)
a U '

Figure 4 illustrates epidemic curves generated with system (Eqs. 1-4) with an
explicit gamma distribution (mean 1 and coefficient of variation v = 1) for suscep-
tibility (solid green) and connectivity (solid blue). Technically the distribution was
discretized in n bins and a system of 4n ODEs was run to generate the curves. Dashed
curves were added to the plots to enable comparisons with the corresponding results
generated by the reduced systems (Eqs. 22-25 and B.8-B.11, respectively). The bot-
tom panel shown the associated effective reproduction numbers R in the case of the
reduced systems, and the empirical proxy R; when explicit distributions are imple-
mented (recall that the two coincide when variation is in susceptibility). All runs
were conducted with basic reproduction number Ry = 3, incubation period (1/8 = 4
days), infectious period (1/y = 3 days) and coefficient of individual variation (v = 1).
Notice that the reduction is exact in the variable susceptibility case but not with vari-
able connectivity. In a related study we fitted both explicit and reduced models to real
epidemics and obtained similar parameter estimates and conclusions irrespective of
which version was adopted.
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