Python library for reading and writing well data using Log ASCII Standard (LAS) files
Clone or download
Kent Inverarity
Kent Inverarity v0.23
Latest commit 5187f4f Nov 6, 2018

README.md

lasio

Status Version License Python versions Build Status Build status Docker Build

This is a Python 2.7 and 3.3+ package to read and write Log ASCII Standard (LAS) files, used for borehole data such as geophysical, geological, or petrophysical logs. It's compatible with versions 1.2 and 2.0 of the LAS file specification, published by the Canadian Well Logging Society. Support for LAS 3 is being worked on. In principle it is designed to read as many types of LAS files as possible, including ones containing common errors or non-compliant formatting.

Depending on your particular application you may also want to check out striplog for stratigraphic/lithological data, or welly for dealing with data at the well level. lasio is primarily for reading & writing LAS files.

Note this is not a package for reading LiDAR data (also called "LAS files").

Documentation

See here for the complete lasio package documentation.

Quick start

Install the usual way:

$ pip install lasio

Very quick example session:

>>> import lasio
>>> las = lasio.read("sample_big.las")

Data is accessible both directly as numpy arrays

>>> las.keys()
['DEPT', 'DT', 'RHOB', 'NPHI', 'SFLU', 'SFLA', 'ILM', 'ILD']
>>> las['SFLU']
array([ 123.45,  123.45,  123.45, ...,  123.45,  123.45,  123.45])
>>> las['DEPT']
array([ 1670.   ,  1669.875,  1669.75 , ...,  1669.75 ,  1670.   ,
        1669.875])

and as CurveItem objects with associated metadata:

>>> las.curves
[CurveItem(mnemonic=DEPT, unit=M, value=, descr=1  DEPTH, original_mnemonic=DEPT, data.shape=(29897,)), 
CurveItem(mnemonic=DT, unit=US/M, value=, descr=2  SONIC TRANSIT TIME, original_mnemonic=DT, data.shape=(29897,)), 
CurveItem(mnemonic=RHOB, unit=K/M3, value=, descr=3  BULK DENSITY, original_mnemonic=RHOB, data.shape=(29897,)), 
CurveItem(mnemonic=NPHI, unit=V/V, value=, descr=4   NEUTRON POROSITY, original_mnemonic=NPHI, data.shape=(29897,)), 
CurveItem(mnemonic=SFLU, unit=OHMM, value=, descr=5  RXO RESISTIVITY, original_mnemonic=SFLU, data.shape=(29897,)), 
CurveItem(mnemonic=SFLA, unit=OHMM, value=, descr=6  SHALLOW RESISTIVITY, original_mnemonic=SFLA, data.shape=(29897,)), 
CurveItem(mnemonic=ILM, unit=OHMM, value=, descr=7  MEDIUM RESISTIVITY, original_mnemonic=ILM, data.shape=(29897,)), 
CurveItem(mnemonic=ILD, unit=OHMM, value=, descr=8  DEEP RESISTIVITY, original_mnemonic=ILD, data.shape=(29897,))]

Header information is parsed into simple HeaderItem objects, and stored in a dictionary for each section of the header:

>>> las.version
[HeaderItem(mnemonic=VERS, unit=, value=1.2, descr=CWLS LOG ASCII STANDARD -VERSION 1.2, original_mnemonic=VERS), 
HeaderItem(mnemonic=WRAP, unit=, value=NO, descr=ONE LINE PER DEPTH STEP, original_mnemonic=WRAP)]
>>> las.well
[HeaderItem(mnemonic=STRT, unit=M, value=1670.0, descr=, original_mnemonic=STRT), 
HeaderItem(mnemonic=STOP, unit=M, value=1660.0, descr=, original_mnemonic=STOP), 
HeaderItem(mnemonic=STEP, unit=M, value=-0.125, descr=, original_mnemonic=STEP), 
HeaderItem(mnemonic=NULL, unit=, value=-999.25, descr=, original_mnemonic=NULL), 
HeaderItem(mnemonic=COMP, unit=, value=ANY OIL COMPANY LTD., descr=COMPANY, original_mnemonic=COMP), 
HeaderItem(mnemonic=WELL, unit=, value=ANY ET AL OIL WELL #12, descr=WELL, original_mnemonic=WELL), 
HeaderItem(mnemonic=FLD, unit=, value=EDAM, descr=FIELD, original_mnemonic=FLD), 
HeaderItem(mnemonic=LOC, unit=, value=A9-16-49, descr=LOCATION, original_mnemonic=LOC), 
HeaderItem(mnemonic=PROV, unit=, value=SASKATCHEWAN, descr=PROVINCE, original_mnemonic=PROV), 
HeaderItem(mnemonic=SRVC, unit=, value=ANY LOGGING COMPANY LTD., descr=SERVICE COMPANY, original_mnemonic=SRVC), 
HeaderItem(mnemonic=DATE, unit=, value=25-DEC-1988, descr=LOG DATE, original_mnemonic=DATE), 
HeaderItem(mnemonic=UWI, unit=, value=100091604920, descr=UNIQUE WELL ID, original_mnemonic=UWI)]
>>> las.params
[HeaderItem(mnemonic=BHT, unit=DEGC, value=35.5, descr=BOTTOM HOLE TEMPERATURE, original_mnemonic=BHT), 
HeaderItem(mnemonic=BS, unit=MM, value=200.0, descr=BIT SIZE, original_mnemonic=BS), 
HeaderItem(mnemonic=FD, unit=K/M3, value=1000.0, descr=FLUID DENSITY, original_mnemonic=FD), 
HeaderItem(mnemonic=MATR, unit=, value=0.0, descr=NEUTRON MATRIX(0=LIME,1=SAND,2=DOLO), original_mnemonic=MATR), 
HeaderItem(mnemonic=MDEN, unit=, value=2710.0, descr=LOGGING MATRIX DENSITY, original_mnemonic=MDEN), 
HeaderItem(mnemonic=RMF, unit=OHMM, value=0.216, descr=MUD FILTRATE RESISTIVITY, original_mnemonic=RMF), 
HeaderItem(mnemonic=DFD, unit=K/M3, value=1525.0, descr=DRILL FLUID DENSITY, original_mnemonic=DFD)]

The data is stored as a 2D numpy array:

>>> las.data
array([[ 1670.   ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1669.875,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1669.75 ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       ...,
       [ 1669.75 ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1670.   ,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ],
       [ 1669.875,   123.45 ,  2550.   , ...,   123.45 ,   110.2  ,   105.6  ]])

You can also retrieve and load data as a pandas DataFrame, build LAS files from scratch, write them back to disc, and export to Excel, amongst other things.

See the documentation for more details.

License

MIT