Branch: master
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
422 lines (297 sloc) 14.5 KB


.. module:: jnius

This part of the documentation covers all the interfaces of Pyjnius.

Reflection classes

Base for reflecting a Java class. The idea is to subclass this JavaClass, add few :class:`JavaMethod`, :class:`JavaStaticMethod`, :class:`JavaField`, :class:`JavaStaticField`, and you're done.

You need to define at minimum the :data:`__javaclass__` attribute, and set the :data:`__metaclass__` to :class:`MetaJavaClass`.

So the minimum class definition would look like:

from jnius import JavaClass, MetaJavaClass

class Stack(JavaClass):
    __javaclass__ = 'java/util/Stack'
    __metaclass__ = MetaJavaClass
.. attribute:: __metaclass__

    Must be set to :class:`MetaJavaClass`, otherwise, all the
    methods/fields declared will be not linked to the JavaClass.

    .. note::

        Make sure to choose the right metaclass specifier. In Python 2
        there is ``__metaclass__`` class attribute, in Python 3 there is
        a new syntax ``class Stack(JavaClass, metaclass=MetaJavaClass)``.

        For more info see `PEP 3115

.. attribute:: __javaclass__

    Represents the Java class name, in the format 'org/lang/Class' (e.g.
    'java/util/Stack'), not 'org.lang.Class'.

.. attribute:: __javaconstructor__

    If not set, we assume the default constructor takes no parameters.
    Otherwise, it can be a list of all possible signatures of the
    constructor. For example, a reflection of the String java class would
    look like::

        class String(JavaClass):
            __javaclass__ == 'java/lang/String'
            __metaclass__ = MetaJavaClass
            __javaconstructor__ == (
                # ...

Reflection of a Java method.

.. method:: __init__(signature, static=False)

    Create a reflection of a Java method. The signature is in the JNI
    format. For example::

        class Stack(JavaClass):
            __javaclass__ = 'java/util/Stack'
            __metaclass__ = MetaJavaClass

            peek = JavaMethod('()Ljava/lang/Object;')
            empty = JavaMethod('()Z')

    The name associated with the method is automatically set from the
    declaration within the JavaClass itself.

    The signature can be found with `javap -s`. For example, if you
    want to fetch the signatures available for `java.util.Stack`::

        $ javap -s java.util.Stack
        Compiled from ""
        public class java.util.Stack extends java.util.Vector{
        public java.util.Stack();
          Signature: ()V
        public java.lang.Object push(java.lang.Object);
          Signature: (Ljava/lang/Object;)Ljava/lang/Object;
        public synchronized java.lang.Object pop();
          Signature: ()Ljava/lang/Object;
        public synchronized java.lang.Object peek();
          Signature: ()Ljava/lang/Object;
        public boolean empty();
          Signature: ()Z
        public synchronized int search(java.lang.Object);
          Signature: (Ljava/lang/Object;)I

Reflection of a static Java method.

Reflection of a Java field.

.. method:: __init__(signature, static=False)

    Create a reflection of a Java field. The signature is in the JNI
    format. For example::

        class System(JavaClass):
            __javaclass__ = 'java/lang/System'
            __metaclass__ = MetaJavaClass

            out = JavaField('()Ljava/io/InputStream;', static=True)

    The name associated to the method is automatically set from the
    declaration within the JavaClass itself.

Reflection of a static Java field.

Reflection of a Java method that can be called from multiple signatures. For example, the method getBytes in the String class can be called from:

public byte[] getBytes(java.lang.String)
public byte[] getBytes(java.nio.charset.Charset)
public byte[] getBytes()

Let's see how you could declare that method:

class String(JavaClass):
    __javaclass__ = 'java/lang/String'
    __metaclass__ = MetaJavaClass

    getBytes = JavaMultipleMethod([

Then, when you try to access this method, it will choose the best method available according to the type of the arguments you're using. Internally, we calculate a "match" score for each available signature, and take the best one. Without going into the details, the score calculation looks something like:

  • a direct type match is +10
  • a indirect type match (like using a float for an int argument) is +5
  • object with unknown type (:class:`JavaObject`) is +1
  • otherwise, it's considered as an error case, and returns -1

Reflection functions

.. function:: autoclass(name)

    Return a :class:`JavaClass` that represents the class passed from `name`.
    The name must be written in the format `a.b.c`, not `a/b/c`.

    >>> from jnius import autoclass
    >>> autoclass('java.lang.System')
    <class ''>

    autoclass can also represent a nested Java class:

    >>> autoclass('android.provider.Settings$Secure')
    <class '$Secure'>

    .. note::
        There are sometimes cases when a Java class contains a member that is
        a Python keyword (such as `from`, `class`, etc). You will need to use
        `getattr()` to access the member and then you will be able to call it::

            from jnius import autoclass
            func_from = getattr(autoclass(''), 'from')

        There is also a special case for a `SomeClass.class` class literal
        which you will find either as a result of `SomeClass.getClass()`
        or in the `__javaclass__` python attribute.

    .. warning::
        Currently `SomeClass.getClass()` returns a different Python object,
        therefore to safely compare whether something is the same class in
        Java use `A.hashCode() == B.hashCode()`.

Java class implementation in Python

Base for creating a Java class from a Python class. This allows us to implement java interfaces completely in Python.

In reality, you'll create a Python class that mimics the list of declared :data:`__javainterfaces__`. When you give an instance of this class to Java, Java will just accept it and call the interface methods as declared. Under the hood, we are catching the call, and redirecting it to use your declared Python method.

Your class will act as a Proxy to the Java interfaces.

You need to define at minimum the :data:`__javainterfaces__` attribute, and declare java methods with the :func:`java_method` decorator.


Static methods and static fields are not supported.

For example, you could implement the java/util/ListIterator interface in Python like this:

from jnius import PythonJavaClass, java_method

class PythonListIterator(PythonJavaClass):
    __javainterfaces__ = ['java/util/ListIterator']

    def __init__(self, collection, index=0):
        super(TestImplemIterator, self).__init__()
        self.collection = collection
        self.index = index

    def hasNext(self):
        return self.index < len( - 1

    def next(self):
        obj =[self.index]
        self.index += 1
        return obj

    # etc...
.. attribute:: __javainterfaces__

    List of the Java interfaces you want to proxify, in the format
    'org/lang/Class' (e.g. 'java/util/Iterator'), not 'org.lang.Class'.

.. attribute:: __javacontext__

    Indicate which class loader to use, 'system' or 'app'. The default is

    - By default, we assume that you are going to implement a Java
      interface declared in the Java API. It will use the 'system' class
    - On android, all the java interfaces that you ship within the APK are
      not accessible with the system class loader, but with the application
      thread class loader. So if you wish to implement a class from an
      interface you've done in your app, use 'app'.
.. function:: java_method(java_signature, name=None)

    Decoration function to use with :class:`PythonJavaClass`. The
    `java_signature` must match the wanted signature of the interface. The
    `name` of the method will be the name of the Python method by default. You
    can still force it, in case of multiple signature with the same Java method

    For example::

        class PythonListIterator(PythonJavaClass):
            __javainterfaces__ = ['java/util/ListIterator']

            def next(self):
                obj =[self.index]
                self.index += 1
                return obj

    Another example with the same Java method name, but 2 differents signatures::

        class TestImplem(PythonJavaClass):
            __javainterfaces__ = ['java/util/List']

            def listIterator(self):
                return PythonListIterator(self)

            def listIteratorWithIndex(self, index):
                return PythonListIterator(self, index)

Java signature format

Java signatures have a special format that could be difficult to understand at first. Let's look at the details. A signature is in the format:

(<argument1><argument2><...>)<return type>

All the types for any part of the signature can be one of:

  • L<java class>; = represent a Java object of the type <java class>
  • Z = represent a java/lang/Boolean;
  • B = represent a java/lang/Byte;
  • C = represent a java/lang/Character;
  • S = represent a java/lang/Short;
  • I = represent a java/lang/Integer;
  • J = represent a java/lang/Long;
  • F = represent a java/lang/Float;
  • D = represent a java/lang/Double;
  • V = represent void, available only for the return type

All the types can have the [ prefix to indicate an array. The return type can be V or empty.

A signature like:

-> argument 1 is an integer
-> argument 2 is a java.util.List object
-> the method doesn't return anything.

-> argument 1 is a Collection
-> argument 2 is an array of Object
-> nothing is returned

-> argument 1 is a Byte []
-> a boolean is returned

When you implement Java in Python, the signature of the Java method must match. Java provides a tool named javap to get the signature of any java class. For example:

$ javap -s java.util.Iterator
Compiled from ""
public interface java.util.Iterator{
public abstract boolean hasNext();
  Signature: ()Z
public abstract java.lang.Object next();
  Signature: ()Ljava/lang/Object;
public abstract void remove();
  Signature: ()V

The signature for methods of any android class can be easily seen by following these steps:

1. $ cd path/to/android/sdk/
2. $ cd platforms/android-xx/  # Replace xx with your android version
3. $ javap -s -classpath android.jar  # Replace with any android class whose methods' signature you want to see

JVM options and the class path

JVM options need to be set before import jnius is called, as they cannot be changed after the VM starts up. To this end, you can:

import jnius_config
jnius_config.add_options('-Xrs', '-Xmx4096')
jnius_config.set_classpath('.', '/usr/local/fem/plugins/*')
import jnius

If a classpath is set with these functions, it overrides any CLASSPATH environment variable. Multiple options or path entries should be supplied as multiple arguments to the add_ and set_ functions. If no classpath is provided and CLASSPATH is not set, the path defaults to '.'. This functionality is not available on Android.

Pyjnius and threads

.. function:: detach()

    Each time you create a native thread in Python and use Pyjnius, any call to
    Pyjnius methods will force attachment of the native thread to the current JVM.
    But you must detach it before leaving the thread, and Pyjnius cannot do it for


import threading
import jnius

def run(...):
        # use pyjnius here

If you don't, it will crash on dalvik and ART / Android:

D/dalvikvm(16696): threadid=12: thread exiting, not yet detached (count=0)
D/dalvikvm(16696): threadid=12: thread exiting, not yet detached (count=1)
E/dalvikvm(16696): threadid=12: native thread exited without detaching
E/dalvikvm(16696): VM aborting


W/art     (21168): Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): Thread[16,tid=21293,Native,Thread*=0x4c25c040,peer=0x677eaa70,"Thread-16219"]
F/art     (21168): art/runtime/] Native thread exited without calling DetachCurrentThread: Thread[16,tid=21293,Native,Thread*=0x4c25c040,peer=0x677eaa70,"Thread-16219"]
F/art     (21168): art/runtime/] Runtime aborting...
F/art     (21168): art/runtime/] (Aborting thread was not attached to runtime!)
F/art     (21168): art/runtime/] Dumping all threads without appropriate locks held: thread list lock mutator lock
F/art     (21168): art/runtime/] All threads:
F/art     (21168): art/runtime/] DALVIK THREADS (16):