
UPPSALA UNIVERSITY December 31, 2017
Department of Information Technology

Handwriting Recognition

Artificial Intelligence Using Statistical Methods

Fabian Alenius, Kjell Winblad and Chongyang Sun

Abstract

Recognizing handwritten text means transforming a graphical representation
of text into its symbolic representation. Handwriting recognition is used in a
wide variety of applications. This paper describes and empirically evaluates a
handwritten text recognition system based on Hidden Markov Models. The re-
sults show that Hidden Markov Models can successfully be used for handwriting
recognition.

Handwriting Recognition Contents

Contents

1 Introduction 1

2 Previous Work 1

3 Overview of Hidden Markov Models 2

4 Method 2
4.1 Overview of Classifiers . 2
4.2 Topology of Hidden Markov Models 4

4.2.1 Hidden Markov Model Topology for the Character Classifier 4
4.2.2 Hidden Markov Model Topology for the Word Classifiers . 4

4.3 Initial Parameter Selection . 6
4.4 Implementation Issues . 6

4.4.1 Floating Point Precision 6
4.4.2 Zero Probability Transitions 7

4.5 Image Preprocessing and Feature Extraction 7
4.6 Dataset . 8

5 Result 9
5.1 Character Classification with Different Parameters 9
5.2 Forward-classifier with Different Initialization Methods 10
5.3 Two Level Classification with the Viterbi-classifier 11

6 Discussion 12
6.1 Character Classifier . 12
6.2 Forward-classifier . 13
6.3 Viterbi-classifier . 14

7 Future Work 14

A Source Code 16

B Result Reproduction 16

C Testing Handwriting Recognition in Graphical User Interface 16

D Example Words for Two Stage Classification 17

i

Handwriting Recognition 2 Previous Work

1 Introduction

Recognition of handwritten text has been a popular research area for decades
because it can be used in many different applications [6]. There are two dif-
ferent approaches to handwriting recognition, online and offline. In the online
approach we know the order in which the strokes and individual points were
drawn. This information can easily be captured if the text is recorded by a
digital pen or on a touchscreen. In the offline approach we are only given the
final image. Online recognition is primarily used for signature verification, au-
thor authentication and digital pens. Application areas for offline recognition
include postal automation, bank cheque processing and automatic data entry
[6]. Formally, handwriting recognition is the task of transforming a language
represented in graphical form into its symbolic representation [7].

The ultimate goal in handwritten recognition is to recognize words. However,
one way to potentially decompose or simplify the problem is to segment words
into its individual characters [3]. Segmentation can either be done explicitly or
implicitly. Explicit segmentation tries to separate the word at character bound-
aries while implicit segmentation separates the word into equal sized frames.
The implicit frames, each represented by a feature vector, are then mapped into
characters.

This paper is focused on offline handwritten recognition. We attempt to tackle
both character and word recognition. To simplify the word recognition problem,
we assume that the images containing the words have already been explicitly
segmented into new images containing the separated characters. For word recog-
nition, we also assume that the words come from a finite lexicon. Finally, we
assume that the strokes that together compose a character has a width of 1
pixel. These simplifying assumptions were made due to the limited time avail-
able for this project. In the following sections we describe how a handwritten
text recognition system was developed based on Hidden Markov Models and
evaluate its performance.

2 Previous Work

Because handwriting recognition is such a well-researched area there is a wealth
of literature available.We mention only a few references that we found help-
ful. Cheriet et al. [1] gives a good review of the development of handwriting
recognition. They also go on to give a broad overview of feature extraction
and classification using a plethora of different techniques. Rabiner, L. R. [8]
gives an excellent review of HMMs and the Baum-Welch training algorithm,
as well as how to apply them in speech recognition. El-Yacoubi et al. [3]
introduce an approach to recognize text using Hidden Markov Models with ex-
plicit word segmentation. Laan et al. [4] evaluate three different initial model
selection techniques for the Baum-Welch algorithm, randomized, uniform and
count-based initialization. Despite impressive progress over the last couple of
decades, performance is still far away from human performance.

1

Handwriting Recognition 4 Method

3 Overview of Hidden Markov Models

For pattern recognition problems, like handwritten character recognition, there
will always be some randomness and uncertainty from the source. Stochastic
modeling deals with these problem efficiently by using probabilistic models [2].
Among such stochastic approaches, Hidden Markov Models have been widely
used to model dynamic signals. The Hidden Markov Model treats data as a
sequence of observations, while using hidden states that are connected to each
other by transition probabilities.

An HMM is characterized by the following [8]:

1. N, the number of states in the model.

2. M, the number of distinct observation symbols.

3. A, the transition probability distribution.

4. B, the observation symbol probability distribution for each state.

5. π, the initial state state distribution.

In contrast to a knowledge-based approach, HMMs use statistical algorithms
that can automatically extract knowledge from samples. Also, HMMs model
patterns implicitly with different paths in the stochastic work. The performance
of the model can be enhanced by adding more samples [2].

4 Method

This section describes the handwritten text recognition system we developed.
The section starts by giving a top level overview of the system and then it
describes the details such as the HMM implementation, feature extraction and
the datasets used for training.

4.1 Overview of Classifiers

The handwriting recognition system has two levels, each containing a classifier.
The first classifier is a function that takes an image as input and outputs a
character. The second classifier is a function that takes a string of characters
as input and outputs a word.

We have implemented two kinds of word classifiers. The first one is called
Forward-classifier and it has exactly the same architecture as the character clas-
sifier and is explained in this section. The second one is called Viterbi-classifier
and is explained in Section 4.2.2. A flowchart that shows the classification
process can be seen in Figure 1.

The classifiers contain HMMs for all elements in the set of possible outputs.
So if the character classifier is trained to recognize the 26 Latin characters, it
will contain 26 HMMs. When the classifiers are trained they are given input
examples for all possible outputs. If the input I is given to one of the classifiers
the following steps are performed to calculate the output:

2

Handwriting Recognition 4 Method

Figure 1: Flowchart of classification process.

1. The probability of I is calculated for all HMMs contained in the classifier:

(a) I is translated into a sequence of observation symbols O = O1, O2, ..., On.
If I is a string of characters and the output of the classifier is a word,
the translation is straightforward. Every character in the string is
simply translated to the corresponding observation symbol. There
are also special observations for the start and end states. This is ex-
plained in more detail in the following sections. If I is an image, the
image is first segmented to a sequence of segments. An observation
symbol is then obtained from all segments. See section 4.5 for more
information about the image feature extraction.

(b) The Forward algorithm [8] is then used to calculate the probability
of O given the HMM.

2. The output symbol with the highest probability in the previous step is
returned as output.

The following parameters must be supplied when a classifier is created1:

• The set of possible output symbols and corresponding training examples.

• The initialization method that should be used by the HMMs.

• A binary variable, specifying if the training examples should be used to
train the model with the Baum-Welch [8] training algorithm.

1A few more parameters can be given but are not listed here because of lack of importance.
See the source code of the system for information about other parameters. How the source
code can be obtained is explained in appendix A.

3

Handwriting Recognition 4 Method

4.2 Topology of Hidden Markov Models

Because the Baum-Welch algorithm assumes that the topology of the model is
correct, it is important to devise a suitable topology before training starts. The
topology of the model is usually constructed by using prior knowledge of the
data. For handwritten signals, a left-to-right HMM is often used where no back
transitions from right to left are allowed. [9]

4.2.1 Hidden Markov Model Topology for the Character Classifier

A model is created for each character in the training phase, as described in
Section 4.1. Because the Latin alphabet only contains 26 characters, it is not
too computationally costly to train a separate model for each character. The
topology is very similar to the topology suggested by Laan et al [5]. We used
special beginning and end states denoted by start and end respectively. If the
image feature extraction step produces n segments there will be n+2 states in the
HMMs. Special beginning and end states are included because multiple training
observation sequences are concatenated to form one observation sequence. See
Figure 2. The sequence is then used as input to the Baum-Welch algorithm.
The initialization of the transition and emission matrices are done in such a way
that the following properties are fulfilled:

• The beginning state start will always emit the special symbol @ and the
end state will always emit the special symbol $.

• The beginning state start will always transition to the first normal state.

• The ending state end always transitions back to the beginning state start.

• All other states always transition forward to a state that has not been
visited since the last visit to start.

Figure 2: Character topology.

4.2.2 Hidden Markov Model Topology for the Word Classifiers

We have implemented two classifiers for classifying words. The first called
Forward-classifier, has exactly the same topology as the character classifier and
uses one HMM for every character as described in Section 4.1. If the word has
n letters, there will be n+ 2 states in the corresponding HMM.

4

Handwriting Recognition 4 Method

It is natural to implement one HMM for each of the words when the vocabulary
is small. When the vocabulary is larger, this approach may have performance
problems. With a large vocabulary using a single HMM can be beneficial. A
single model has the additional benefit that it can learn common patterns in
words such as ”ing”.

The second word classifier that we implemented, called (Viterbi-classifier), uses
a single HMM for the whole vocabulary. The HMM used in the Viterbi-classifier
is called Word HMM in the following text. See Figure 3.

Figure 3: Word HMM topology for a three-letter alphabet.

Unlike the HMMs used in the character classifier, Word HMM have states that
have transitions to all other states. It has 28 hidden states (26 for the 26 Latin
letters and 2 with special emissions @ and $). The transition matrix is a 28 * 28
matrix, which is estimated from the lexicon analysis, using the method explain
below. For example, if there are only three words in our vocabulary: DOG,
CAT and CAP. Then the probability of going from A to T is 0.5, A to P is 0.5
and A to other letters is 0. According to the parameter estimation method we
just explained, the transition probability matrix only needs information from
every two successive letters in the words.

The observations are the letters we have observed from the character classi-
fier. The observation probability matrix is created from observations when
testing the character classifier. For example, if we have 10 test example images
for A, and 5 of them are classified to be A, 3 to be B and 2 to be C, then
P (observation = A) = 0.5, P (observation = B) = 0.3 and P (observation =
C) = 0.2. For this example, the row for A in the probability matrix will be set
to [0.5, 0.3, 0.2, 0, 0, ..., 0].

So given the Word HMM described above the classification of a string of char-
acters can be done in the following way:

1. Use the string as an observation sequence and apply the Viterbi-algorithm
to get the most probable sequence of states.

2. Calculate the similarity of the resulting string to all possible output words.
As similarity measure we use the hamming distance.

3. Return the most similar word.

Based on our topology, useful knowledge from the character classification step is
preserved. To demonstrate the performance of the Viterbi-classifier, we tested

5

Handwriting Recognition 4 Method

our topology using vocabulary that included eight animal names. See Sec-
tion 5.3. Among the results from classifying ”pig”, after using the character
classifier, we got ”dxq” as observation. Viterbi-classifier classifies ”dxg” to
”pig” instead of ”dog”. This is attributed to how we estimate the parameters.
After observed ”d”, the path ”dog” is more likely to be chosen instead of ”pig”.
However, there is less chance that ”o” is observed as ”x” (10−10) than ”i” is
observed as ”x” (0.15), so the path is successfully fixed.

4.3 Initial Parameter Selection

Hidden Markov Models can be efficiently trained by the Baum-Welch (BW)
algorithm, which is an iterative process for estimating parameters for HMMs.
As an iterative algorithm, BW starts from an initial model and estimates tran-
sition and emission probability parameters by computing expectations via the
Forward-Backward algorithm. The algorithm sums over all paths containing a
given event until convergence is reached.

Since the Baum-Welch algorithm is a local iterative method, the resulting HMM
and the number of required iterations depend heavily on the initial model. There
are many ways to generate an initial model, some techniques consider the train-
ing data while others do not [5]. Similar to Laan et al. [5], we tried two
initialization strategies, count-based and random. The random initialization
strategy assigns the values in the transition and emission matrices to random
values. For the count-based initialization the emission matrix is assigned based
on information from the training examples. The transition matrix is then as-
signed so that all states get the same probability of transferring to all reachable
states.

4.4 Implementation Issues

During the implementation of the HMM and related algorithms, we ran into
some problems. These problems are described in the following sections.

4.4.1 Floating Point Precision

When the number of states t grows sufficiently large, the forward variable at(i)
and backward variable bt(i) approaches zero and exceed the precision range of
floating point numbers. One way to solve this problem is by incorporating a
scaling procedure. For each t, we first compute at(i) according to the induction
equation (20) in [8], and then multiply it by a scaling factor ct, calculated by
Equation 1, where N is the number of states.

ct =
1

N∑
i=1

at(i)

(1)

To avoid the underflow problem in the Viterbi algorithm, which calculates the
maximum likelihood state sequence, we add log probabilities instead of multi-
plying probabilities. With this change, no scaling is required.

6

Handwriting Recognition 4 Method

4.4.2 Zero Probability Transitions

Another problem that may occur when training HMM parameters when little
training data is available, is that the probability matrices may contain zero
values for valid transitions and emissions. This could lead to bad results if the
test set contains a lot of these ”impossible” transitions. In the Word HMM we
initialize all zero probabilities to the value 10−10. For the other HMMs this is
left as future work.

4.5 Image Preprocessing and Feature Extraction

The character classifier classifies images that contain handwritten characters, as
described in Section 4.1. A sequence of observation symbols is extracted from
the supplied training data and used when an image is to be classified. This
process is called feature extraction.

Figure 4: An illustration of the feature extraction process.

As mentioned in Section 1, our system assumes that there is one image per
character, that the lines in the characters consists of a single color and that the
lines are one pixel wide. The feature extraction process can be divided into the
following steps:

1. The scaling step makes sure that the character fills the whole image. Be-
cause of this step, it does not matter where in the given image the char-
acter is painted. The scaling may cause a problem because the lines may
get thicker than one pixel after scaling, if the original painted character
just fills a small part of the image2. This problem will be avoided if the
training examples contain images where the character fills a small part of
the image. This is because the model will learn to recognize images with
thicker lines. The following algorithm is used to do the scaling:

(a) The minimum rectangle R in the image that contains the whole char-
acter is found.

2The standard Java image scaling algorithm is used for the scaling.

7

Handwriting Recognition 4 Method

(b) The rectangle R is scaled to fill the size of the original image. The
scaled version of R is returned as the scaled image.

2. The new scaled image is sliced into N vertical segments of the same size.

3. An observation symbol is extracted from every segment in the following
way:

(a) The number of pixels in the three largest components in the segment
are found. The component sizes are then put into a triple (s1, s2, s3)
that is sorted so that the largest number is first. A component is
defined as a set of colored pixels that are connected and that contains
all pixels that are connected to one of the pixels in the set. Two
colored pixels are connected if they are neighbors or if it is possible
to create a path of colored connected pixels between them. All pixels
except the border pixels have 8 neighbors. If the segment contains
less than three components, the triple is filled with zeros.

So for example if a segment contains two lines. One line containing
10 pixels and another line containing 5 pixels. Then the resulting
triple will be (10, 5, 0).

(b) The elements in the triple is classified as Large, Small or None. The
classification function c is defined as in Equation 2. The constant d
in the equation is given as a parameter to the feature extraction.

c(s) = None if s = 0, Large if s > d and Small otherwise. (2)

The triple (s1, s2, s3) is translated to a triple of classes (c1, c2, c3) by
applying the function c to all elements in the triple.

(c) The triple of classes is mapped to an observation symbol. In total
there are 10 different triples and there is one observation symbol per
triple. So in total there are 10 different observation symbols.

The classification constant d and the number of segments N are parameters to
the feature extractor. An example of feature extraction for an image can be
seen in Figure 4.

4.6 Dataset

An attempt was made to find a dataset with handwritten text, but no dataset
that fulfilled our requirements was found. The datasets that were found would
require a lot of preprocessing. Figure 5 shows a sample from one of the datasets
we found. To get good results from that kind of dataset it would be necessary
to implement baseline slant normalization, skew correction, skeleton calculation
and so on.

Therefore, instead of spending a lot of time preprocessing word images, we
implemented a Graphical User Interface to create our own dataset. The largest
advantages of this solution is that our solution records one pixel wide lines and
the characters are already separated. A large part of the work, image processing,
was thus reduced significantly. Our dataset contains 100 examples for every
capital letter in the Latin alphabet3. An example image from our character
image dataset can be found in Figure 4 that shows the feature extraction process.

3The dataset is available together with the source code for the system. See appendix A.

8

Handwriting Recognition 5 Result

Figure 5: Word image examples.

To get a dataset for training the word classifier a generator was created4. The
generator creates random errors in the words given as input. To generate the
dataset is obviously not optimal for practical applications, but it is good enough
to test the implementation.

5 Result

In this section we present the results from evaluating the system described in
Section 4. We discuss the results in more detail in Section 6. Finally, in Section 7
we present some future changes to the system that we believe will improve the
results.

5.1 Character Classification with Different Parameters

In this section we describe results obtained with the character classifier. As
described in Section 4.5 the image feature extraction step in the character clas-
sifier takes two parameters. The first parameter is the number of segments that
should be created. The second parameter is the size classification factor, which
is used in Equation 2. For the experiment we only had 100 examples for each of
the 26 characters. How the examples are produced is described in Section 4.6.
An initial experiment was performed to test count-based initialization and ran-
dom initialization before and after training with the Baum-Welch algorithm.
The initial experiment shows that there is probably not enough training data
for the training to have any positive effect when using count-based initialization.
This could possible be fixed to some extent with some kind of smoothening of
the model parameters. 10 test examples and 90 training examples for every
character were selected randomly from the example set for the experiments.
The results from the initial experiment can be found in Table 1. In the ini-
tial experiment 1.3 was used as the size classification factor and the number of
segments was set to 7.

4Please, see HandRecosrcapiword examples generator.py in the source code for documen-
tation of the word example generator. See appendix A.

9

Handwriting Recognition 5 Result

NOE RIBF CBIBT RIAT CBIAT
90 4% 53% 16% 16%

Table 1: Test of the character classifier with different initialization methods
and before and after training. NOE=”number of training examples for every
word”, RIBF=”random initialization score before training”, CBIBT=”count-
based initialization score before training”, RIAT=”random initialization score
after training”, CBIAT=”count-based initialization score after training”

Only count-based initialization is considered in the experiment of different pa-
rameters, because the initial experiment showed that the best result seems to
be produced when only using count-based initialization and no training. When
testing the parameters, 5 models were created in the same way as in the initial
experiment. The average accuracy for these 5 models when testing them with
their own test example set was recorded as the accuracy for the configuration.
For all 5 models that were created, different training example sets and test ex-
ample sets were randomly selected. We used 90 training examples and 10 test
examples for every character, as in the initial experiment. The results of the
experiment can be seen in Figure 6.

Figure 6: Results for character classification test with different parameters. The
performance is the percentage of correctly classified characters.

5.2 Forward-classifier with Different Initialization Meth-
ods

In this section we will describe results obtained for the Forward-classifier, used
to classify words, introduced in Section 4.1. The classification results for running

10

Handwriting Recognition 5 Result

with the words in Table 2 will be presented. The training and test example words
were randomly generated with the generator having the properties in Table 3.
See Section 4.6, for more information about the word example generator. We
used a word example generator because it meant that we could generate as much
training data as we needed.

We used a total of 100 test examples to test the accuracy of the created clas-
sifiers. Five test examples each for the 20 words. The test examples were
generated using the same properties as the training examples. Two initializa-
tion methods, count-based initialization and random initialization, were tested
with 100, 200, 400, 800 and 1600 training examples. The results of the test
is presented in Figure 7. It contains the test scores for the two initialization
methods, before and after training with the Baum-Welch algorithm. The test
score is defined as the percentage of correctly classified test examples.

dog cat pig love hate
scala python summer winter night
daydream nightmare animal happiness sadness
tennis feminism fascism socialism capitalism

Table 2: Words supported by the resulting classifier.

Probability of extra letter at position 0.03
Probability of extra letter equal neighbor 0.7
Probability of wrong letter at position 0.1
Probability of letter missing at position 0.03

Table 3: Properties enforced by the word training example generator.

5.3 Two Level Classification with the Viterbi-classifier

In this section we will describe results obtained for the Viterbi-classifier together
with the character classifier. The classifiers are introduced in Section 4.1. Thus
unlike in Section 5.2, we will illustrate the results for a fully working two stage
offline-handwritten recognition system.

A test string for a word w used as input to the classifier in the test was generated
in the following way:

1. A test example set with examples of character images containing 20 images
for every character. For every letter in the string a corresponding character
image was chosen randomly.

2. The selected character images were classified with a character classifier
which used 100 training examples, 11 segments and a classification factor
of 4.6.

3. The resulting string from step 2 is the final test example for the word w.

Two experiments were ran with two different sets of possible output words.
These sets can be seen in appendix D. Example set 1 contains 8 words with
3 letters in each. Example set 2 contains 151 unconstrained English words

11

Handwriting Recognition 6 Discussion

Figure 7: Test with different number of training examples and different ini-
tialization methods. NOE=”number of training examples for every word”,
RIBF=”random initialization score before training”, CBIBT=”count-based ini-
tialization score before training”, RIAT=”random initialization score after
training”, CBIAT=”count-based initialization score after training.

chosen from common prefix and root word examples in the dictionary. To test
the difference between using the viterbi correction and simply the similarity
measurement, we performed tests both with and without the Viterbi correction.
For every word in the list 10 test examples were created. With the Viterbi
correction the score was 96% for example set 1 and 91% for example set 2.
Without the Viterbi correction the score was 70% for example set 1 and 91%
for example set 2.

The results for example set 2 are almost the same, with and without the Viterbi
step respectively. Figure 8 shows how the string looks like before and after the
Viterbi step, as well as after the similarity mapping, in this order From the
figure it is possible to see that the Viterbi step actually improves the input
string.

6 Discussion

6.1 Character Classifier

We believe that the amount of available training data is a liming factor for
the character classifier. Because when we train the system, after it has been
initialized with the count-based method, with the Baum-Welch algorithm the

12

Handwriting Recognition 6 Discussion

Figure 8: Example image from output of the Viterbi-classifier experiment.

performance becomes worse. If the classifier is to be accurate for a random
person’s handwriting, it would be beneficial to let more people paint training
examples to get a more generalized classifier.

Our approach will always have problems with characters that look similar to
other characters when turned upside down. For example ”M” and ”W” look
exactly alike if they are turned upside down for some handwriting styles. Why
this problem occur is obvious if one looks at the feature extraction process.

6.2 Forward-classifier

The results in Section 5.2 clearly show the importance of having enough training
data. When using the count-based initialization method, the accuracy actually
becomes worse after training the model with Baum-Welch when using less than
800 training examples. The effects of not having enough training data when
using the Baum-Welch algorithm is further discussed in [8]. One way to po-
tentially solve this problem is add some kind of smoothening of the probability
matrices after training. The smoothening could be done by for example setting
all transitions with probability zero to a small value that is greater than zero.
The count-based initialization method gives almost perfect accuracy on the test
set without training with Baum-Welch.

The vocabulary used by the Forward-classifier is quite small as it only contains
20 words. The accuracy would probably be worse with a larger vocabulary with
many words that are similar to each other. The classifier implementation would
also have performance problems for many applications with large vocabularies.
This is because the time complexity of classifying an example grows linearly
with the size of the vocabulary. This is easy to see if one considers that the
classifier contains one HMM for every word in the vocabulary and that the
forward calculation algorithm needs to run for all HMMs when an example is to
be classified. When the training examples are generated as previously described,
it is probably not very useful in real applications. For most applications it
would be better to use a spell-checking algorithm that can find words similar to
a string in an effective way. However, if the training data instead is the result

13

Handwriting Recognition References

of a handwritten recognition system it could be more useful, because then the
model could learn to correct mistakes that the handwritten recognition system
does.

6.3 Viterbi-classifier

In general, the Viterbi-classifier performs well. However, when we evaluated
with a lexicon that contains long words, the performance improvement is very
small compared to just using the output from the character classifier directly.
But for the lexicon that contains shorter words, the performance improvement
is larger. We believe this is because all the letters are of the same length and
therefore the classification becomes harder. With shorter words, a single letter
that is wrong can make a big difference.

7 Future Work

While the results show that using HMMs for building a handwritten recognition
system is a viable alternative, there is a lot of room for improvement. One way
to potentially improve performance is by extending the feature extraction to
consider segments from top to bottom as well as from left to right. This means
that the observation sequence would become twice as long, given a square image.

During scaling, the lines can become wider than one pixel. Because we are cat-
egorizing the strokes based on how many pixels they contain, this is a problem.
This could be fixed by adding a thinning phase after the scaling is completed
to make the strokes one pixel wide again.

Another way to improve performance is by using a different feature representa-
tion. For example, vector quantization can be used to map vectors into a smaller
space which can then be used as observations in the HMM. Using this method
we would not be reliant on arbitrary constants to map features into observa-
tions. It would also make it easier to the extend the system to use additional
features.

We saw in our results that adding more training data improves performance so
this is an easy way to enhance the system. Finally, to make the system more
general we should allow for words that are not pre-segmented into characters.

References

[1] Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, and Ching Y. Suen.
Character Recognition Systems. A Guide for Students and Practioners.
Wiley-Interscience. Wiley, 2007.

[2] Wongyu Cho, Seong-Whan Lee, and Jin H. Kim. Modeling and recogni-
tion of cursive words with hidden Markov models. Pattern Recognition,
28(12):1941–1953, December 1995.

14

Handwriting Recognition References

[3] A. El-Yacoubi, R. Sabourin, C. Y. Suen, and M. Gilloux. An hmm-based
approach for off-line unconstrained handwritten word modeling and recog-
nition. IEEE Trans. Pattern Anal. Mach. Intell., 21:752–760, August 1999.

[4] Nicholas C. Laan, Danielle F. Pace, and Hagit Shatkay. Initial model selec-
tion for the baum-welch algorithm as applied to hmms of dna sequences.

[5] Nicholas C Laan, Danielle F Pace, and Hagit Shatkay. Initial model selection
for the Baum-Welch algorithm as applied to HMMs of DNA sequences . DNA
Sequence.

[6] Umapada Pal, Tetsushi Wakabayashi, and Fumitaka Kimura. Comparative
Study of Devnagari Handwritten Character Recognition Using Different Fea-
ture and Classifiers. pages 1111–1115, 2009.

[7] Réjean Plamondon and Sargur N. Srihari. On-line and off-line handwriting
recognition: A comprehensive survey. IEEE Trans. Pattern Anal. Mach.
Intell., 22(1):63–84, 2000.

[8] L. R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. 77(2):257–286, 1989.

[9] Ching Y Suen. CHARACTER RECOGNITION SYSTEMS A Guide for
Students and Practioners.

15

Handwriting RecognitionC Testing Handwriting Recognition in Graphical User Interface

A Source Code

The source code for the system described in this report can be found at the
following address:

http://github.com/kjellwinblad/HandReco

The source code can be downloaded as a ZIP-archive or cloned using git5.

B Result Reproduction

The test results presented in Section 5 are produced by scripts written in the
Jython6 programming language. The following steps will run the test scripts:

1. Follow the instructions in appendix A to download the source code for the
system.

2. Follow the instructions in the README.md file in the root of the source code
directory. These instructions will help you to set up your environment for
running the test scripts.

3. Open a system terminal and execute the following commands (Notice that
the path may look different in your system):

(a) cd /path/to/HandReco/src/test

(b) To run tests for word classifier:

(c) jython word_classifer_tester.py

(d) To run tests for character classifier:

(e) jython character_classifier_tester.py

C Testing Handwriting Recognition in Graphi-
cal User Interface

A graphical user interface (GUI) has been created in order to test the handwrit-
ing recognition system in practice. See Figure 9 for a screenshot of the graphical
user interface. The following steps can be used to run the GUI:

1. Follow the instructions in appendix B to step 2.

2. Open a system terminal and execute the following commands (Notice that
the path may look different in your system):

(a) cd /path/to/HandReco/src/gui}

(b) jython hand_reco_writer.py

5http://git-scm.com/
6Jython is a version of Python for the Java Virtual Machine (http://www.jython.org/)

16

Handwriting Recognition D Example Words for Two Stage Classification

The GUI can only recognize capital Latin letters. To see which words are
available for word corrections click on the Info⇒Available Words... menu
item. To input a character, first paint the character in the paint area and then
press the Write Character button. To do a space, press the Space button.
To do a space and let the word classifier correct the last word, press the Space
and Correct button.

Figure 9: Screenshot of HandReco Writer.

D Example Words for Two Stage Classification

Example set 1:

pig,dog,cat,bee,ape,elk,hen,cow

Example set 2:

asexual, amoral, anarchy, anhydrous, anabaptist, anachronism, abnormal, abduct,
abductor, abscission, agent, agency, agenda, antipathy, antitank, anticlimax,
aquarium, aqueous, automatic, automaton, bisexual, biennial, binary, bene-
fit, benevolent, benefactor, beneficent, biology, biography, circumference, cir-
cumlocution, circumstance, democracy, theocrat, technocracy, diagonal, dialec-
tic, dialogue, diagnosis, dynamic, dynamo, dynasty, dynamite, exotic, exterior,
extraneous, extemporaneous, exophalmic, exogenous, exothermic, federation,
confederate, fraternize, fraternity, fraternal, fratricide, geology, geography, geo-
centric, geomancy, graphic, graphite, graphology, heterogeneous, heterosexual,
heterodox, heterodont, heterocyclic, heterozygous, homogeneous, homogenized,
homozygous, identity, idiopathic, individual, idiosyncrasy, idiopathic, incredi-
ble, ignoble, inglorious, inhospitable, infinite, infinitesimal, immoral, interact,
interstellar, interpret, interstitial, legal, legislature, lexicon, lexicography, lib-
erty, library, liberal, locality, local, circumlocution, mission, transmit, remit,
monocle, monopoly, monogamy, monovalent, monomania, monarchy, oligarchy,
oligopoly, paternal, paternity, patricide, peripatetic, periscope, perineum, peri-

17

Handwriting Recognition D Example Words for Two Stage Classification

toneum, political, metropolitan, premier, preview, premium, prescient, project,
projectile, public, republic, pub, publican, psychology, solo, solitary, synchro-
nize, symphony, sympathy, syncretic, syncope, subterfuge, subtle, subaltern,
subterranean, telegraph, telephone, teleology, transport, transcend, transmo-
grify, utility, utilitarian, video, vision, visible

18

