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1 MLII1 – Principal Components Analysis 
The objective of this exercise is to get a profound understanding of principal component analysis (PCA). 

For this reason, you will implement PCA. You should be able to assess the capabilities of PCA in its main 

application domains data compression and data visualization. You will use principal component 

analysis to find a low-dimensional representation of face images and visualize the color distribution in 

an RGB image.  

For this exercise you will need the following files: 

 ex7 pca.m - Octave/Matlab script for running the exercise on PCA 
 ex7data1.mat - Example Dataset for PCA 
 ex7faces.mat - Faces Dataset 
 kMeansResultsOnAceros_small.mat – bird image from exercise MLI6 and results from 

kMeans-Clustering 

 displayData.m - Displays 2D data stored in a matrix 
 drawLine.m - Draws a line over an exsiting figure 
 featureNormalize.m – Normalizes feature vectors 
 pca.m*) - Perform principal component analysis 
 projectData.m*) - Projects a data set into a lower dimensional space 
 recoverData.m*) - Recovers the original data from the projection 

 

You will have to modify the files marked with *) . 

Throughout this exercise, you will be using the script ex7_pca.m. This script sets up the dataset for 

the problems and makes calls to functions that you will write. You are only required to modify functions 

in other files, by following the instructions in this document. 

1.1 Example dataset 
In this exercise, you will use principal component analysis (PCA) to perform dimensionality reduction. 

You will first experiment with an example 2D dataset to get an intuition on how PCA works, and then 

use it on a bigger dataset of 5000 face images. 

To help you understand how PCA works, you will first start with a 2D dataset, which has one direction 

of large variation and one of smaller variation. The script ex7_pca.m will plot the training data (Figure 

1). In this part of the exercise, you will visualize what happens when you use PCA to reduce the data 

from 2D to 1D. In practice, you might want to reduce data from 256 to 50 dimensions, say; but using 

lower dimensional data in this example allows us to visualize the algorithm much better. 
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Figure 1: Example Dataset 1 

1.2 Implementing PCA 
Now, you will implement PCA. PCA consists of two computational steps: First, you compute the 

covariance matrix of the data. Then, you use Octave/Matlab’s SVD function to compute the 

eigenvectors �⃗� (1), �⃗� (2), … , �⃗� (𝑛). These will correspond to the principal components of variation in the 

data.  

Before using PCA, it is important to first normalize the data by subtracting the mean value of each 

feature from the dataset and scaling each dimension so that they are in the same range. In the provided 

script ex7_pca.m, this normalization has been performed for you using the featureNormalize 

function. 

After normalizing the data, you can run PCA to compute the principal components. Your task is to 

complete the code in pca.m to compute the principal components of the dataset. First, you should 

compute the covariance matrix of the data, which is given by: 

Σ =
1

𝑚
�̂�𝑇𝑋 

where �̂� is the data matrix with examples in rows and 𝑚 is the number of examples. Note that Σ is a 

𝑛 ×  𝑛 matrix and not the summation operator. After computing the covariance matrix, you can run 

SVD on it to compute the principal components. In Octave/Matlab, you can run SVD with the following 

command: [U, S, V] = svd(Sigma), where U will contain the principal components and S will 

contain a diagonal matrix. 
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Figure 2: Computed eigenvectors of the Dataset 1 

Once you have completed pca.m, the ex7_pca.m script will run PCA on the example dataset and plot 

the corresponding eigenvectors of the principal components found (Figure 2). The script will also 

output the eigenvector of the top principal component. For this you should expect to see an output of 

about [-0.707 -0.707]. (It is possible that Octave/Matlab may instead output the negative of this, 

since �⃗� (1)
 and −�⃗� (1)

 are equally valid choices for the first principal component.) 

Show your results to an instructor. 

1.3 Dimensionality Reduction with PCA 
After computing the principal components, you can use them to reduce the feature dimension of your 

dataset by projecting each example onto a lower dimensional space, 𝑥 (𝑖) ⟶ 𝑧 (𝑖) (e.g., projecting the 

data from 2D to 1D).  

In this part of the exercise, you will use the eigenvectors returned by PCA and project the example 

dataset into a 1-dimensional space. In practice, if you were using a learning algorithm such as linear 

regression or perhaps neural networks, you could now use the projected data instead of the original 

data. By using the projected data, you can train your model faster as there are less dimensions in the 

input. 

1.3.1 Projecting the data onto the principal components 

You should now complete the code in projectData.m. Specifically, you are given a dataset X, the 

principal components U, and the desired number of dimensions to reduce to K. You should project 

each example in X onto the top K components in U. Note that the top K components in U are given by 

the first K columns of U, that is U_reduce = U(:, 1:K). Once you have completed the code in 

projectData.m, ex7_pca.m will project the first example onto the first dimension and you should 

see a value of about 1.481 (or possibly -1.481, if you got −�⃗� (1)
 instead of  �⃗� (1)). 
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Show your results to an instructor. 

1.3.2 Reconstructing an approximation of the data 

After projecting the data onto the lower dimensional space, you can approximately recover the data 

by projecting them back onto the original high dimensional space. Your task is to complete 

recoverData.m to project each example in Z back onto the original space and return the recovered 

approximation in X_rec. 

Once you have completed the code in projectData.m, ex7_pca.m will recover an approximation of 

the first example and you should see a value of about [-1.047 -1.047]. 

Show your results to an instructor. 

1.3.3 Visualizing the projections 

 

Figure 3: The normalized and projected data 

After completing both projectData and recoverData, ex7_pca.m will now perform both the 

projection and approximate reconstruction to show how the projection affects the data. In Figure 3, 

the original data points are indicated with the blue circles, while the projected data points are indicated 

with the red circles. The projection effectively only retains the information in the direction given by 

�⃗� (1). 

1.4 Face Image Dataset 
In this part of the exercise, you will run PCA on face images to see how it can be used in practice for 

dimension reduction. The dataset ex7faces.mat contains a dataset X of face images, each 32 × 32 in 

grayscale. Each row of X corresponds to one face image (a row vector of length 1024). The next step 

in ex7_pca.m will load and visualize the first 100 of these face images (Figure 4). 
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Figure 4: Faces dataset 

1.4.1 PCA on Faces 

To run PCA on the face dataset, we first normalize the dataset by subtracting the mean of each feature 

from the data matrix X. The script ex7_pca.m will do this for you and then run your PCA code. After 

running PCA, you will obtain the principal components of the dataset. Notice that each principal 

component in U (each row) is a vector of length 𝑛 (where for the face dataset, 𝑛 =  1024). It turns out 

that we can visualize these principal components by reshaping each of them into a 32 × 32 matrix that 

corresponds to the pixels in the original dataset. The script ex7_pca.m displays the first 36 principal 

components that describe the largest variations (Figure 5). If you want, you can also change the code 

to display more principal components to see how they capture more and more details. 

1.4.2 Dimensionality Reduction 

Now that you have computed the principal components for the face dataset, you can use it to reduce 

the dimension of the face dataset. This allows you to use your learning algorithm with a smaller input 

size (e.g., 100 dimensions) instead of the original 1024 dimensions. This can help speed up your 

learning algorithm. 
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Figure 5: Principal components of the face dataset 

 

Figure 6: Original images of the faces and ones reconstructed from the first top 100 principal components  

 

The next part in ex7_pca.m will project the face dataset onto only the first 100 principal components. 

Concretely, each face image is now described by a vector 𝑧 (𝑖) ∈ ℝ100. To understand what is lost in 

the dimension reduction, you can recover the data using only the projected dataset. In ex7_pca.m, 

an approximate recovery of the data is performed and the original and projected face images are 

displayed side by side (Figure 6). From the reconstruction, you can observe that the general structure 

and appearance of the faces are kept while the fine details are lost. This is a remarkable reduction 

(more than 10x) in the dataset size that can help speed up your learning algorithm significantly. For 

example, if you were training a neural network to perform person recognition (given a face image, 

predict the identity of the person), you can use the dimension reduced input of only a 100 dimensions 

instead of the original pixels. 
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1.5 PCA for visualization 
In the earlier 𝐾-means image compression exercise (MLI6), you used the 𝐾-means algorithm in the 3-

dimensional RGB space of a bird image (Figure 7). In the last part of the ex7_pca.m script, we have 

provided code to visualize the final pixel assignments in this 3D space using the scatter3 function 

(Figure 8). Each data point is colored according to the cluster it has been assigned to. You can drag 

your mouse on the figure to rotate and inspect this data in 3 dimensions. 

 

Figure 7: RGB image 

 

 

Figure 8:RGB pixel values colored according to cluster membership 
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It turns out that visualizing datasets in 3 dimensions or greater can be cumbersome. Therefore, it is 

often desirable to only display the data in 2D even at the cost of losing some information. In practice, 

PCA is often used to reduce the dimensionality of data for visualization purposes. In the next part of 

ex7_pca.m, the script will apply your implementation of PCA to the 3-dimensional data to reduce it 

to 2 dimensions and visualize the result in a 2D scatter plot (Figure 9). The PCA projection can be 

thought of as a rotation that selects the view that maximizes the spread of the data, which often 

corresponds to the “best” view. 

 

Figure 9: 2D visualization produced by PCA 
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2 MLII2 – Anomaly Detection 
In this exercise, you will implement the anomaly detection algorithm and apply it to detect failing 
servers on a network. You will recognize that even simple probability calculus, as it is used in this 
algorithm, can be applied very effectively to provide additional benefit in practical applications. 
Furthermore, you will once more calculate and apply performance metrics for tuning a machine 
learning system. 
 
For this exercise you will need the following files:  

 ex8.m - Octave/Matlab script for running this exercise 

 ex8data1.mat - First example Dataset for anomaly detection 

 ex8data2.mat - Second example Dataset for anomaly detection 

 multivariateGaussian.m - Computes the probability density function for a Gaussian 
distribution 

 visualizeFit.m - 2D plot of a Gaussian distribution and a dataset 

 estimateGaussian.m*) - Estimate the parameters of a Gaussian distribution with a 
diagonal covariance matrix 

 selectThreshold.m*) - Find a threshold for anomaly detection 
 
You will have to modify the files marked with *). 

Throughout this exercise (anomaly detection), you will be using the script ex8.m. This script sets up 

the dataset for the problems and makes calls to functions that you will write. You are only required to 

modify functions in other files, by following the instructions in this assignment. 

2.1 Example dataset 
In this exercise, you will implement an anomaly detection algorithm to detect anomalous behavior in 
server computers. The features measure the throughput (mb/s) and latency (ms) of response of each 
server. While your servers were operating, you collected 𝑚 = 307 examples of how they were 

behaving, and thus have an unlabeled dataset {𝑥 (1), … , 𝑥 (𝑚)}. You suspect that the vast majority of 

these examples are “normal” (non-anomalous) examples of the servers operating normally, but there 
might also be some examples of servers acting anomalously within this dataset. 
You will use a Gaussian model to detect anomalous examples in your dataset. You will first start on a 
2D dataset that will allow you to visualize what the algorithm is doing. On that dataset you will fit a 
Gaussian distribution and then find values that have very low probability and hence can be considered 
anomalies. After that, you will apply the anomaly detection algorithm to a larger dataset with many 
dimensions. You will be using ex8.m for this part of the exercise. 
The first part of ex8.m will visualize the dataset as shown in Figure 10. 
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Figure 10: The first dataset 

2.2 Gaussian distribution 
To perform anomaly detection, you will first need to fit a model to the data’s distribution. 

Given a training set, {𝑥 (1), … , 𝑥 (𝑚)} (where 𝑥 (𝑖) ∈ ℝ𝑛), you want to estimate the Gaussian 

distribution for each of the features 𝑥𝑖. For each feature 𝑖 = 1…𝑛, you need to find parameters 𝜇𝑖  and 

σ𝑖
2 that fit the data in the 𝑖-th dimension {𝑥𝑖

(1)
, … , 𝑥𝑖

(𝑚)
} (𝑖-th dimension of each example). 

The Gaussian distribution is given by 

𝑝(𝑥, 𝜇, 𝜎2) =
1

√2𝜋𝜎2 
 𝑒

− 
(𝑥−𝜇)2

2𝜎2  , 

where 𝜇 is the mean and 𝜎2 controls the variance. 

2.3 Estimating parameters for a Gaussian 

You can estimate the parameters, (𝜇𝑖, 𝜎𝑖
2), of the 𝑖-th feature by using the following equations. To 

estimate the mean, you will use: 

𝜇𝑖 =
1

𝑚
∑ 𝑥𝑖

(𝑗)

𝑚

𝑗 = 1

 , 

and for the variance you will use: 

𝜎𝑖
2 =

1

𝑚
∑ (𝑥𝑖

(𝑗)
− 𝜇𝑖)

2
𝑚

𝑗 = 1

. 

 
Your task is to complete the code in estimateGaussian.m. This function takes as input the data 
matrix X and should output an 𝑛-dimension vector mu that holds the mean of all the 𝑛-features and 
another 𝑛-dimension vector sigma2 that holds the variances of all the features. You can implement 
this using a for-loop over every feature and every training example (though a vectorized 
implementation might be more efficient; feel free to use a vectorized implementation if you prefer). 

Note that in Octave, the var function will (by default) use 
1

𝑚−1
 , instead of 

1

𝑚
 , when computing 𝜎𝑖

2 . 
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Once you have completed the code in estimateGaussian.m, the next part of ex8.m will visualize 
the contours of the fitted Gaussian distribution. You should get a plot similar to Figure 11. From your 
plot, you can see that most of the examples are in the region with the highest probability, while the 
anomalous examples are in the regions with lower probabilities. 
 
You should now show your estimate Gaussian parameters function to an instructor. 

2.4 Selecting the threshold, 𝜺 
Now that you have estimated the Gaussian parameters, you can investigate which examples have a 
very high probability given this distribution and which examples have a very low probability.  

 

Figure 11: The Gaussian distribution contours of the distribution fit to the dataset 

The low probability examples are more likely to be the anomalies in our dataset. One way to determine 
which examples are anomalies is to select a threshold based on a cross validation set. In this part of 
the exercise, you will implement an algorithm to select the threshold ε using the 𝐹1 score on a cross 
validation set. 
You should now complete the code in selectThreshold.m. For this, we will use a cross validation 

set {(𝑥 𝑐𝑣
(1)

, 𝑦𝑐𝑣
(1)

) ,… , (𝑥 𝑐𝑣
(𝑚𝑐𝑣)

, 𝑦𝑐𝑣
(𝑚𝑐𝑣))}, where the label 𝑦 = 1 corresponds to an anomalous example, 

and 𝑦 = 0 corresponds to a normal example. For each cross-validation example, we will compute 

𝑝 (𝑥 𝑐𝑣
(𝑖)). The vector of all of these probabilities 𝑝 (𝑥 𝑐𝑣

(1)
) ,… , 𝑝 (𝑥 𝑐𝑣

(𝑚𝑐𝑣)) is passed to 

selectThreshold.m in the vector pval. The corresponding labels 𝑦𝑐𝑣
(1)

, … , 𝑦𝑐𝑣
(𝑚𝑐𝑣) are passed to the 

same function in the vector yval. 
The function selectThreshold.m should return two values; the first is the selected threshold ε. If 
an example 𝑥 has a low probability 𝑝(𝑥) < ε, then it is considered to be an anomaly. The function 
should also return the 𝐹1 score, which tells you how well you’re doing on finding the ground truth 
anomalies given a certain threshold. For many different values of ε, you will compute the resulting 𝐹1 
score by computing how many examples the current threshold classifies correctly and incorrectly. 
The 𝐹1 score is computed using precision (𝑝𝑟𝑒𝑐) and recall (𝑟𝑒𝑐): 
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𝐹1 =
2 ⋅ 𝑝𝑟𝑒𝑐 ⋅ 𝑟𝑒𝑐

𝑝𝑟𝑒𝑐 + 𝑟𝑒𝑐
 , 

You compute precision and recall by: 

𝑝𝑟𝑒𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

 

𝑟𝑒𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 , 

where 

 𝑡𝑝 is the number of true positives: the ground truth label says it’s an anomaly and our 
algorithm correctly classified it as an anomaly. 

 𝑓𝑝 is the number of false positives: the ground truth label says it’s not an anomaly, but our 
algorithm incorrectly classified it as an anomaly. 

 𝑓𝑛 is the number of false negatives: the ground truth label says it’s an anomaly, but our 
algorithm incorrectly classified it as not being anomalous. 

 
In the provided code selectThreshold.m, there is already a loop that will try many different values 
of ε and select the best ε based on the 𝐹1 score. 
You should now complete the code in selectThreshold.m. You can implement the computation of 
the F1 score using a for-loop over all the cross validation examples (to compute the values 𝑡𝑝, 𝑓𝑝, 𝑓𝑛). 
You should see a value for epsilon of about 8.99e-05. 
 
Implementation Note: In order to compute 𝑡𝑝, 𝑓𝑝 and 𝑓𝑛, you may be able to use a vectorized 
implementation rather than loop over all the examples. This can be implemented by Octave’s equality 
test between a vector and a single number. If you have several binary values in an 𝑛-dimensional binary 
vector ∈ {0,1}𝑛 , you can find out how many values in this vector are 0 by using: sum(v == 0). You 
can also apply a logical and operator to such binary vectors. For instance, let cvPredictions be a 
binary vector of the size of your number of cross validation set, where the 𝑖-th element is 1 if your 

algorithm considers 𝑥𝑐𝑣
(𝑖) an anomaly, and 0 otherwise. You can then, for example, compute the number 

of false positives using: fp = sum((cvPredictions == 1) & (yval == 0)). 
 
Once you have completed the code in selectThreshold.m, the next step in ex8.m will run your 
anomaly detection code and circle the anomalies in the plot (Figure 12). 
 
You should now show your select threshold function to an instructor. 
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Figure 12: The classified anomalies 

2.5 High dimensional dataset 
The last part of the script ex8.m will run the anomaly detection algorithm you implemented on a 
more realistic and much harder dataset. In this dataset, each example is described by 11 features, 
capturing many more properties of your compute servers. 

The script will use your code to estimate the Gaussian parameters (μ𝑖 and 𝜎𝑖
2), evaluate the 

probabilities for both the training data X from which you estimated the Gaussian parameters, and do 
so for the the cross-validation set Xval. Finally, it will use selectThreshold to find the best 
threshold ε. You should see a value epsilon of about 1.38e-18, and 117 anomalies found. 
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3 MLII3 – Recommender Systems 
In this exercise, you will use collaborative filtering to build a recommender system for movies. The 
implementation of the algorithm will enable you to recognize the similarities with fundamental 
supervised learning algorithms and how actually working systems can be built by cleverly combing and 
varying them. By watching a typical application running and understanding the algorithmic 
background, you are able to assess the relevance of recommender systems for current online business.  
 
For this exercise you will need the following files:  

 ex8_cofi.m - Octave/Matlab script for running the exercise 

 ex8_movies.mat - Movie Review Dataset 

 ex8_movieParams.mat - Parameters provided for debugging 

 checkCostFunction.m - Gradient checking for collaborative filtering 

 computeNumericalGradient.m - Numerically compute gradients 

 fmincg.m - Function minimization routine (similar to fminunc) 

 loadMovieList.m - Loads the list of movies into a cell-array 

 movie_ids.txt - List of movies 

 cofiCostFunc.m*) - Implement the cost function for collaborative filtering 
 
You will have to modify the files marked with *). 

Throughout the exercise, you will be using the script ex8_cofi.m. This script sets up the dataset for 

the problems and makes calls to functions that you will write. You are only required to modify functions 

in other files, by following the instructions in this assignment. 

3.1 Movie ratings dataset 
In this exercise, you will implement the collaborative filtering learning algorithm and apply it to a 
dataset of movie ratings.1 This dataset consists of ratings on a scale of 1 to 5. The dataset has 𝑛𝑢 =
943 users, and 𝑛𝑚 = 1682 movies. You will be working with the script ex8_cofi.m. 
In the next parts of this exercise, you will implement the function cofiCostFunc.m that computes 
the collaborative fitlering objective function and gradient. After implementing the cost function and 
gradient, you will use fmincg.m to learn the parameters for collaborative filtering. 
The first part of the script_ex8 cofi.m will load the dataset ex8_movies.mat, providing the 
variables Y and R in your Octave/Matlab environment. 

The matrix 𝑌 (a num_movies × num_users matrix) stores the ratings 𝑦(𝑖,𝑗) (from 1 to 5). The matrix 
𝑅 is a binary-valued indicator matrix, where 𝑅(𝑖, 𝑗) = 1 if user 𝑗 gave a rating to movie 𝑖, and 
𝑅(𝑖, 𝑗) = 0 otherwise. The objective of collaborative filtering is to predict movie ratings for the movies 
that users have not yet rated, that is, the entries with 𝑅(𝑖, 𝑗) = 0. This will allow us to recommend the 
movies with the highest predicted ratings to the user. 
To help you understand the matrix Y, the script ex8_cofi.m will compute the average movie rating 
for the first movie (Toy Story) and output the average rating to the screen. 
Throughout this part of the exercise, you will also be working with the matrices, X and Theta: 
 

X =  

[
 
 
 
 
 
 − (�⃗⃗� 

(1)
)
𝑇
−

− (�⃗⃗� 
(2)

)
𝑇
−

⋮

− (�⃗⃗� 
(𝑛𝑚)

)
𝑇
−]

 
 
 
 
 
 

 , Theta =  

[
 
 
 
 
 
 
 − (θ⃗⃗ 

(1)

)
𝑇

−

− (θ⃗⃗ 
(2)

)
𝑇

−

⋮

− (θ⃗⃗ 
(𝑛𝑢)

)
𝑇

−]
 
 
 
 
 
 
 

 . 

                                                           
1 MovieLens 100k Dataset from GroupLens Research. 

http://www.grouplens.org/node/73/
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The 𝑖-th row of X corresponds to the feature vector 𝑥 (𝑖) for the 𝑖-th movie, and the 𝑗-th row of Theta 

corresponds to one parameter vector θ⃗ (𝑗), for the 𝑗-th user. Both 𝑥 (𝑖) and 𝜃 (𝑗) are 𝑛-dimensional 

vectors. For the purposes of this exercise, you will use 𝑛 = 100, and therefore, 𝑥 (𝑖) ∈ ℝ100 and θ⃗ (𝑗) ∈
ℝ100. Correspondingly, X is a 𝑛𝑚 × 100 matrix and Theta is a 𝑛𝑢 × 100 matrix. 

3.2 Collaborative filtering learning algorithm 
Now, you will start implementing the collaborative filtering learning algorithm. You will start by 
implementing the cost function (without regularization). 
The collaborative filtering algorithm in the setting of movie recommendations considers a set of 𝑛-

dimensional parameter vectors 𝑥 (1), … , 𝑥 (𝑛𝑚) and  𝜃 (1), … , 𝜃 (𝑛𝑢), where the model predicts the rating 

for movie 𝑖 by user 𝑗 as 𝑦(𝑖,𝑗) = (𝜃 (𝑗))
𝑇
𝑥 (𝑖). Given a dataset that consists of a set of ratings produced 

by some users on some movies, you wish to learn the parameter vectors 𝑥 (1), … , 𝑥 (𝑛𝑚), 𝜃 (1), … , 𝜃 (𝑛𝑢) 
that produce the best fit (minimizes the squared error). 
You will complete the code in cofiCostFunc.m to compute the cost function and gradient for 
collaborative filtering. Note that the parameters to the function (i.e., the values that you are trying to 
learn) are X and Theta. In order to use an off-the-shelf minimizer such as fmincg, the cost function 
has been set up to unroll the parameters into a single vector params. Unrolling means that the 
elements of the matrix X and the elements of the matrix Theta are all written one after another into 
params(1), params(2),…,params(np), where 𝑛𝑝 = 𝑛 ∗ 𝑛𝑚 + 𝑛 ∗ 𝑛𝑢.  

3.2.1 Collaborative filtering cost function 

The collaborative filtering cost function (without regularization) is given by 

𝐽(𝑥 (1), … , 𝑥 (𝑛𝑚), 𝜃 (1), … , 𝜃 (𝑛𝑢)) =
1

2
∑ ((𝜃 (𝑗))

𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗))

2

(𝑖,𝑗):𝑟(𝑖,𝑗)=1

 . 

 
You should now modify cofiCostFunc.m to return this cost in the variable J. Note that you should 
be accumulating the cost for user 𝑗 and movie 𝑖 only if 𝑅(𝑖, 𝑗) = 1. 
After you have completed the function, the script ex8_cofi.m will run your cost function. You should 
expect to see an output of 22.22. 
 
You should now show your cost function an instructor. 
 
Implementation Note: We strongly encourage you to use a vectorized implementation to compute 𝐽, 
since it will later be called many times by the optimization package fmincg. As usual, it might be 
easiest to first write a non-vectorized implementation (to make sure you have the right answer), and 
then modify it to become a vectorized implementation (checking that the vectorization steps do not 
change your algorithm’s output). To come up with a vectorized implementation, the following tip might 
be helpful: You can use the R matrix to set selected entries to 0. For example, R .* M will do an element-
wise multiplication between M and R; since R only has elements with values either 0 or 1, this has the 
effect of setting the elements of M to 0 only when the corresponding value in R is 0. Hence, 
sum(sum(R.*M)) is the sum of all the elements of M for which the corresponding element in R equals 
1. 

3.2.2 Collaborative filtering gradient 

Now, you should implement the gradient (without regularization). Specifically, you should complete 
the code in cofiCostFunc.m to return the variables X_grad and Theta_grad. Note that X_grad 
should be a matrix of the same size as X and similarly, Theta_grad is a matrix of the same size as 
Theta. The gradients of the cost function is given by: 
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𝜕𝐽

𝜕𝑥𝑘
(𝑖)

= ∑ ((𝜃 (𝑗))
𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗)) 𝜃𝑘

(𝑗)

𝑗:𝑟(𝑖,𝑗)=1

 

 
𝜕𝐽

𝜕𝜃𝑘
(𝑗)

= ∑ ((𝜃 (𝑗))
𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗))𝑥𝑘

(𝑖)

𝑖:𝑟(𝑖,𝑗)=1

 . 

 
Note that the function returns the gradient for both sets of variables by unrolling them into a single 
vector. After you have completed the code to compute the gradients, the script ex8 cofi.m will run 
a gradient check (checkCostFunction) to numerically check the implementation of your gradients.2  
If your implementation is correct, you should find that the analytical and numerical gradients match 
up closely. 
 
You should now show your collaborative filtering gradient function to an instructor. 
 
Implementation Note: You can get full credit for this assignment without using a vectorized 
implementation, but your code will run much more slowly (a small number of hours), and so we 
recommend that you try to vectorize your implementation. 

To get started, you can implement the gradient with a for-loop over movies (for computing 
𝜕𝐽

𝜕𝑥𝑘
(𝑖) ) and 

a for-loop over users (for computing 
𝜕𝐽

𝜕𝜃𝑘
(𝑗) ). When you first implement the gradient, you might start 

with an unvectorized version, by implementing another inner for-loop that computes each element in 
the summation. After you have completed the gradient computation this way, you should try to 
vectorize your implementation (vectorize the inner for-loops), so that you’re left with only two for-loops 

(one for looping over movies to compute 
𝜕𝐽

𝜕𝑥𝑘
(𝑖)  for each movie, and one for looping over users to 

compute 
𝜕𝐽

𝜕𝜃
𝑘
(𝑗) for each user). 

 
Implementation Tip: To perform the vectorization, you might find this helpful: You should come up with 

a way to compute all the derivatives associated with 𝑥1
(𝑖), 𝑥2

(𝑖), … , 𝑥𝑛
(𝑖) (i.e., the derivative terms 

associated with the feature vector 𝑥 (𝑖) ) at the same time. Let us define the derivatives for the feature 
vector of the 𝑖-th movie as: 
 

(𝑋𝑔𝑟𝑎𝑑(𝑖, : ))
𝑇

=

[
 
 
 
 
 
 
 
 

𝜕𝐽

𝜕𝑥1
(𝑖)

𝜕𝐽

𝜕𝑥2
(𝑖)

⋮
𝜕𝐽

𝜕𝑥𝑛
(𝑖)

]
 
 
 
 
 
 
 
 

= ∑ ((𝜃 (𝑗))
𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗))

𝑗:𝑟(𝑖,𝑗)=1

𝜃 (𝑗) 

 
To vectorize the above expression, you can start by indexing into Theta and Y to select only the 
elements of interests (that is, those with 𝑟(𝑖, 𝑗) = 1). Intuitively, when you consider the features for the 
𝑖-th movie, you only need to be concern about the users who had given ratings to the movie, and this 
allows you to remove all the other users from Theta and Y. 
Concretely, you can set idx = find(R(i, :)==1) to be a list of all the users that have rated movie 
𝑖. This will allow you to create the temporary matrices 𝑇ℎ𝑒𝑡𝑎𝑡𝑒𝑚𝑝 = 𝑇ℎ𝑒𝑡𝑎(𝑖𝑑𝑥, : ) and 

                                                           
2 This is similar to the numerical check that you will use in the neural networks exercise. 



17 

𝑌𝑡𝑒𝑚𝑝 = 𝑌(𝑖, 𝑖𝑑𝑥) that index into Theta and Y to give you only the set of users which have rated the 

𝑖-th movie. This will allow you to write the derivatives as: 
 

𝑋𝑔𝑟𝑎𝑑(𝑖, : ) = (𝑋(𝑖, : ) ∗ 𝑇ℎ𝑒𝑡𝑎𝑡𝑒𝑚𝑝
𝑇 − 𝑌𝑡𝑒𝑚𝑝) ∗ 𝑇ℎ𝑒𝑡𝑎𝑡𝑒𝑚𝑝 . 

 
(Note: The vectorized computation above returns a row-vector instead.) 
 

After you have vectorized the computations of the derivatives with respect to 𝑥 (𝑖), you should use a 

similar method to vectorize the derivatives with respect to 𝜃 (𝑗) as well. 

3.2.3 Regularized cost function 

The cost function for collaborative filtering with regularization is given by 
 

𝐽(𝑥 (1), … , 𝑥 (𝑛𝑚), 𝜃 (1), … , 𝜃 (𝑛𝑢))

=
1

2
∑ ((𝜃 (𝑗))

𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗))

2

+ (
𝜆

2
∑ ∑ (𝜃𝑘

(𝑗)
)
2

𝑛

𝑘=1

𝑛𝑢

𝑗=1

) + (
𝜆

2
∑ ∑ (𝑥𝑘

(𝑖)
)
2

𝑛

𝑘=1

𝑛𝑚

𝑖=1

)
(𝑖,𝑗):𝑟(𝑖,𝑗)=1

 . 

 
You should now add regularization to your original computations of the cost function, 𝐽. After you are 
done, the script ex8_cofi.m will run your regularized cost function, and you should expect to see a 
cost of about 31.34.  
 
You should now show your regularized cost function to an instructor. 

3.2.4 Regularized gradient 

Now that you have implemented the regularized cost function, you should proceed to implement 
regularization for the gradient. You should add to your implementation in cofiCostFunc.m to return 
the regularized gradient by adding the contributions from the regularization terms. Note that the 
gradients for the regularized cost function is given by: 
 

𝜕𝐽

𝜕𝑥𝑘
(𝑖)

= ∑ ((𝜃 (𝑗))
𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗)) 𝜃𝑘

(𝑗)

𝑗:𝑟(𝑖,𝑗)=1

+ 𝜆𝑥𝑘
(𝑖) 

 
𝜕𝐽

𝜕𝜃𝑘
(𝑗)

= ∑ ((𝜃 (𝑗))
𝑇
𝑥 (𝑖) − 𝑦(𝑖,𝑗)) 𝑥𝑘

(𝑖) + 𝜆𝜃𝑘
(𝑗)

𝑖:𝑟(𝑖,𝑗)=1

 . 

 

This means that you just need to add λ𝑥 (𝑖) to the X_grad(i,:) variable described earlier, and add 

λ𝜃 (𝑗) to the Theta_grad(j,:) variable described earlier. 
After you have completed the code to compute the gradients, the script ex8_cofi.m will run another 
gradient check (checkCostFunction) to numerically check the implementation of your gradients. 
 
You should now show the regularized gradient function to an instructor. 

3.3 Learning movie recommendations 
After you have finished implementing the collaborative filtering cost function and gradient, you can 
now start training your algorithm to make movie recommendations for yourself. In the next part of the 
ex8_cofi.m script, you can enter your own movie preferences, so that later when the algorithm runs, 
you can get your own movie recommendations! We have filled out some values according to our own 
preferences, but you should change this according to your own tastes. The list of all movies and their 
number in the dataset can be found listed in the file movie_idx.txt. 
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3.3.1 Recommendations 

Figure 13: Movie recommendations 

 
After the additional ratings have been added to the dataset, the script will proceed to train the 
collaborative filtering model. This will learn the parameters X and Theta. To predict the rating of movie 

𝑖 for user 𝑗, you need to compute (𝜃 (𝑗))
𝑇
𝑥 (𝑖). The next part of the script computes the ratings for all 

the movies and users and displays the movies that it recommends (Figure 13), according to ratings that 
were entered earlier in the script. Note that you might obtain a different set of the predictions due to 
different random initializations. 
 

Top recommendations for you: 
Predicting rating 4.3 for movie Titanic (1997) 
Predicting rating 4.2 for movie Star Wars (1977) 
Predicting rating 4.0 for movie Raiders of the Lost Ark (1981) 
Predicting rating 3.9 for movie Shawshank Redemption, The (1994) 
Predicting rating 3.9 for movie Return of the Jedi (1983) 
Predicting rating 3.9 for movie Braveheart (1995) 
Predicting rating 3.9 for movie Good Will Hunting (1997) 
Predicting rating 3.8 for movie Empire Strikes Back, The (1980) 
Predicting rating 3.8 for movie Schindler's List (1993) 
Predicting rating 3.8 for movie Air Force One (1997) Original ratings 
provided: 
Rated 4 for Toy Story (1995) 
Rated 3 for Twelve Monkeys (1995) 
Rated 5 for Usual Suspects, The (1995) 
Rated 4 for Outbreak (1995) 
Rated 5 for Shawshank Redemption, The (1994) 
Rated 3 for While You Were Sleeping (1995) 
Rated 5 for Forrest Gump (1994) 
Rated 2 for Silence of the Lambs, The (1991) 
Rated 4 for Alien (1979) 
Rated 5 for Die Hard 2 (1990) 
Rated 5 for Sphere (1998) 
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4 MLII4 – Support Vector Machine 
Support Vector Machine (SVM) is a very popular and widely used classification algorithm. It´s real 
strength lies in its ability to effectively deal with highly non-linear separable problems. The objective 
of this exercise is to get an intuition on how this algorithm works on linear and non-linear separable 
classification problems and to enable you to apply it on real-world problems. You will try out SVM on 
some example datasets to study its behaviour and use it to build a spam classifier.  
 
For this exercise you will need the following files:  

 ex6.m – Octave/Matlab script for the first half of the exercise 

 ex6data1.mat - Example Dataset 1 

 ex6data2.mat - Example Dataset 2 

 ex6data3.mat - Example Dataset 3 

 svmTrain.m - SVM training function 

 svmPredict.m - SVM prediction function 

 plotData.m - Plot 2D data 

 visualizeBoundaryLinear.m - Plot linear boundary 

 visualizeBoundary.m - Plot non-linear boundary 

 linearKernel.m - Linear kernel for SVM 

 gaussianKernel.m*) - Gaussian kernel for SVM 

 dataset3Params.m*) - Parameters to use for Dataset 3 

 ex6_spam.m – Octave/Matlab script for the second half of the exercise 

 spamTrain.mat - Spam training set 

 spamTest.mat - Spam test set 

 emailSample1.txt - Sample email 1 

 emailSample2.txt - Sample email 2 

 spamSample1.txt - Sample spam 1 

 spamSample2.txt - Sample spam 2 

 vocab.txt - Vocabulary list 

 getVocabList.m - Load vocabulary list 

 porterStemmer.m - Stemming function 

 readFile.m - Reads a file into a character string 

 submit.m - Submission script that sends your solutions to our servers 

 submitWeb.m - Alternative submission script 

 processEmail.m*) - Email preprocessing 

 emailFeatures.m*) - Feature extraction from emails 
 
You will have to modify the files marked with *). 

Throughout the exercise, you will be using the script ex6.m and ex6_spam.m. These scripts set up the 
dataset for the problems and make calls to functions that you will write. You are only required to 
modify functions in other files, by following the instructions in this assignment. 

4.1 Understanding SVM 
In the first half of this exercise, you will be using support vector machines (SVMs) with various example 
2D datasets. Experimenting with these datasets will help you gain an intuition of how SVMs work and 
how to use a Gaussian kernel with SVMs. In the next half of the exercise, you will be using support 
vector machines to build a spam classifier. 
The provided script, ex6.m, will help you step through the first half of the exercise. 
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4.1.1 Example Dataset 1 

We will begin by with a 2D example dataset which can be separated by a linear boundary. The script 
ex6.m will plot the training data (Figure 14). In this dataset, the positions of the positive examples 
(indicated with +) and the negative examples (indicated with 𝑜) suggest a natural separation indicated 
by the gap. However, notice that there is an outlier positive example + on the far left at about 
(0.1, 4.1). As part of this exercise, you will also see how this outlier affects the SVM decision boundary. 

 

Figure 14: Example Dataset 1 

In this part of the exercise, you will try using different values of the 𝐶 parameter with SVMs. Informally, 
the 𝐶 parameter is a positive value that controls the penalty for misclassified training examples. A large 

𝐶 parameter tells the SVM to try to classify all the examples correctly. 𝐶 plays a role similar to 
1

λ
, where 

λ is the regularization parameter that we were using previously for logistic regression. 
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Figure 15: SVM Decision Boundary with C = 1 (Example Dataset 1) 

 
 

Figure 16: SVM Decision Boundary with C = 100 (Example Dataset 1) 
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The next part in ex6.m will run the SVM training (with 𝐶 = 1) using SVM software that we have 
included with the starter code, svmTrain.m.1.3 When 𝐶 = 1, you should find that the SVM puts the 
decision boundary in the gap between the two datasets and misclassifies the data point on the far left 
(Figure 15). 
 
Implementation Note: Most SVM software packages (including svmTrain.m) automatically add the 
extra feature 𝑥0 = 1 for you and automatically take care of learning the intercept term θ0. So when 
passing your training data to the SVM software, there is no need to add this extra feature 𝑥0 = 1 
yourself. In particular, in Octave your code should be working with training examples 𝑥 ∈ ℝ𝑛 (rather 
than 𝑥 ∈ ℝ𝑛+1); for example, in the first example dataset 𝑥 ∈ ℝ2. 
 
Your task is to try different values of 𝐶 on this dataset. Specifically, you should change the value of 𝐶 
in the script to 𝐶 = 100 and run the SVM training again. When 𝐶 = 100, you should find that the SVM 
now classifies every single example correctly, but has a decision boundary that does not appear to be 
a natural fit for the data (Figure 16). 

4.2 SVM with Gaussian Kernels 
In this part of the exercise, you will be using SVMs to do non-linear classification. In particular, you will 
be using SVMs with Gaussian kernels on datasets that are not linearly separable. 

4.2.1 Gaussian Kernel 

To find non-linear decision boundaries with the SVM, we need to first implement a Gaussian kernel. 
You can think of the Gaussian kernel as a similarity function that measures the “distance” between a 

pair of examples, (𝑥 (𝑖), 𝑥 (𝑗)). The Gaussian kernel is also parameterized by a bandwidth parameter, σ, 

which determines how fast the similarity metric decreases (to 0) as the examples are further apart. 
You should now complete the code in gaussianKernel.m to compute the Gaussian kernel between 

two examples, (𝑥 (𝑖), 𝑥 (𝑗)). The Gaussian kernel function is defined as: 

 

𝐾𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥(𝑖), 𝑥(𝑗)) = 𝑒𝑥𝑝(−
‖𝑥 (𝑖) − 𝑥 (𝑗)‖

2

2σ2
) = 𝑒𝑥𝑝(−

∑ (𝑥𝑘
(𝑖)

− 𝑥𝑘
(𝑗)

)
2

𝑛

𝑘=1

2σ2

) 

 
Once you’ve completed the function gaussianKernel.m, the script ex6.m will test your kernel 
function on two provided examples and you should expect to see a value of 0.324652. 
 
You should now show your function that computes the Gaussian kernel to an instructor. 

                                                           
3 In order to ensure compatibility with Octave/Matlab, we have included this implementation of an 
SVM learning algorithm. However, this particular implementation was chosen to maximize 
compatibility, and is not very efficient. If you are training an SVM on a real problem, especially if you 
need to scale to a larger dataset, we strongly recommend instead using a highly optimized SVM toolbox 
such as LIBSVM. 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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4.2.2 Example Dataset 2 

 

Figure 17: Example Dataset 2 

The next part in ex6.m will load and plot dataset 2 (Figure 17). From the figure, you can obserse that 
there is no linear decision boundary that separates the positive and negative examples for this dataset. 
However, by using the Gaussian kernel with the SVM, you will be able to learn a non-linear decision 
boundary that can perform reasonably well for the dataset. 
If you have correctly implemented the Gaussian kernel function, ex6.m will proceed to train the SVM 
with the Gaussian kernel on this dataset. 
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Figure 18: SVM (Gaussian Kernel) Decision Boundary (Example Dataset 2) 

Figure 20 shows the decision boundary found by the SVM with a Gaussian kernel. The decision 
boundary is able to separate most of the positive and negative examples correctly and follows the 
contours of the dataset well. 

4.2.3 Example Dataset 3 

In this part of the exercise, you will gain more practical skills on how to use a SVM with a Gaussian 
kernel. The next part of ex6.m will load and display a third dataset (Figure 19). You will be using the 
SVM with the Gaussian kernel with this dataset. 
In the provided dataset, ex6data3.mat, you are given the variables X, y, Xval, yval. The 
provided code in ex6.m trains the SVM classifier using the training set (X, y) using parameters 
loaded from dataset3Params.m. 
Your task is to use the cross validation set Xval, yval to determine the best 𝐶 and σ parameter to 
use. You should write any additional code necessary to help you search over the parameters 𝐶 and σ. 
For both 𝐶 and σ, we suggest trying values in multiplicative steps (e.g., 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30). 
Note that you should try all possible pairs of values for 𝐶 and σ (e.g., 𝐶 = 0.3 and σ = 0.1). For 
example, if you try each of the 8 values listed above for 𝐶 and for σ2, you would end up training and 
evaluating (on the cross validation set) a total of 8² = 64 different models. 
After you have determined the best 𝐶 and σ parameters to use, you should modify the code in 
dataset3Params.m, filling in the best parameters you found. For our best parameters, the SVM 
returned a decision boundary shown in Figure 20. 
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Figure 19: Example Dataset 3 

 

Figure 20: SVM (Gaussian Kernel) Decision Boundary (Example Dataset 3) 

 
 
Implementation Tip: When implementing cross validation to select the best 𝐶 and σ parameter to use, 
you need to evaluate the error on the cross validation set. Recall that for classification, the error is 
defined as the fraction of the cross validation examples that were classified incorrectly. In 
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Octave/Matlab, you can compute this error using mean(double(predictions ~= yval)), where 
predictions is a vector containing all the predictions from the SVM, and yval are the true labels from 
the cross validation set. 
You can use the svmPredict function to generate the predictions for the cross validation set. 
 
You should now show your best 𝐶 and σ values to an instructor. 

4.3 Spam Classification 
Many email services today provide spam filters that are able to classify emails into spam and non-spam 
email with high accuracy. In this part of the exercise, you will use SVMs to build your own spam filter. 
You will be training a classifier to classify whether a given email, 𝑥, is spam (𝑦 = 1) or non-spam 
(𝑦 = 0). In particular, you need to convert each email into a feature vector 𝑥 ∈ ℝ𝑛. The following parts 
of the exercise will walk you through how such a feature vector can be constructed from an email. 
Throughout the rest of this exercise, you will be using the the script ex6_spam.m. The dataset included 
for this exercise is based on a a subset of the SpamAssassin Public Corpus.4 For the purpose of this 
exercise, you will only be using the body of the email (excluding the email headers). 

4.4 Preprocessing Emails  

Figure 21: Sample Email 

Before starting on a machine learning task, it is usually insightful to take a look at examples from the 
dataset. Figure 21 shows a sample email that contains a URL, an email address (at the end), numbers, 
and dollar amounts. While many emails would contain similar types of entities (e.g., numbers, other 
URLs, or other email addresses), the specific entities (e.g., the specific URL or specific dollar amount) 
will be different in almost every email. Therefore, one method often employed in processing emails is 
to “normalize” these values, so that all URLs are treated the same, all numbers are treated the same, 
etc. For example, we could replace each URL in the email with the unique string “httpaddr” to indicate 
that a URL was present. 
This has the effect of letting the spam classifier make a classification decision based on whether any 
URL was present, rather than whether a specific URL was present. This typically improves the 
performance of a spam classifier, since spammers often randomize the URLs, and thus the odds of 
seeing any particular URL again in a new piece of spam is very small. 
In processEmail.m, we have implemented the following email preprocessing and normalization 
steps: 

 Lower-casing: The entire email is converted into lower case, so that captialization is 
ignored (e.g., IndIcaTE is treated the same as Indicate). 

 Stripping HTML: All HTML tags are removed from the emails. Many emails often come with 
HTML formatting; we remove all the HTML tags, so that only the content remains. 

 Normalizing URLs: All URLs are replaced with the text “httpaddr”. 

 Normalizing Email Addresses: All email addresses are replaced with the text 
“emailaddr”. 

 Normalizing Numbers: All numbers are replaced with the text “number”. 

                                                           
4 http://spamassassin.apache.org/publiccorpus/ 

> Anyone knows how much it costs to host a web portal ? 
> 
Well, it depends on how many visitors youre expecting. This can be anywhere from less than 10 
bucks a month to a couple of $100. You should checkout http://www.rackspace.com/ or perhaps 
Amazon EC2 if youre running something big.. 
 
To unsubscribe yourself from this mailing list, send an email to: 
groupname-unsubscribe@egroups.com 
 

http://spamassassin.apache.org/publiccorpus/
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 Normalizing Dollars: All dollar signs ($) are replaced with the text “dollar”. 

 Word Stemming: Words are reduced to their stemmed form. For example, “discount”, 
“discounts”, “discounted” and “discounting” are all replaced with “discount”. Sometimes, 
the Stemmer actually strips off additional characters from the end, so “include”, “includes”, 
“included”, and “including” are all replaced with “includ”. 

 Removal of non-words: Non-words and punctuation have been removed. All white spaces 
(tabs, newlines, spaces) have all been trimmed to a single space character. 

 
The result of these preprocessing steps is shown in Figure 22. While preprocessing has left word 
fragments and non-words, this form turns out to be much easier to work with for performing feature 
extraction. 

Figure 22: Preprocessed Sample Email 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4.1 Vocabulary List 

After preprocessing the emails, we have a list of words (e.g., Figure 22) for each email. The next step 
is to choose which words we would like to use in our classifier and which we would want to leave out. 
For this exercise, we have chosen only the most frequently occuring words as our set of words 
considered (the vocabulary list). Since words that occur rarely in the training set are only in a few 
emails, they might cause the model to overfit our training set. The complete vocabulary list is in the 
file vocab.txt and also shown in Figure 23. Our vocabulary list was selected by choosing all words 
which occur at least a 100 times in the spam corpus, resulting in a list of 1899 words. In practice, a 
vocabulary list with about 10,000 to 50,000 words is often used. 
Given the vocabulary list, we can now map each word in the preprocessed emails (e.g., Figure 22) into 
a list of word indices that contains the index of the word in the vocabulary list. Figure 24 shows the 
mapping for the sample email. Specifically, in the sample email, the word “anyone” was first 
normalized to “anyon” and then mapped onto the index 86 in the vocabulary list. 
Your task now is to complete the code in processEmail.m to perform this mapping. In the code, you 
are given a string str which is a single word from the processed email. You should look up the word 
in the vocabulary list vocabList and find if the word exists in the vocabulary list. If the word exists, 

anyon know how much it cost to host a web portal well it depend on how mani visitor your expect 
thi can be anywher from less than number buck a month to a coupl of dollarnumb you should 
checkout httpaddr or perhap amazon ecnumb if your run someth big to unsubscrib yourself from 
thi mail list send an email to emailaddr 

1 aa 
2 ab 
3 abil 
... 
86 anyon 
... 
916 know 
... 
1898 zero 
1899 zip 
 

86 916 794 1077 883 
370 1699 790 1822 
1831 883 431 1171 
794 1002 1893 1364 
592 1676 238 162 89 
688 945 1663 1120 
1062 1699 375 1162 
479 1893 1510 799 
1182 1237 810 1895 
1440 1547 181 1699 
1758 1896 688 1676 
992 961 1477 71 530 
1699 531 
 

Figure 23: Vocabulary List Figure 24: Word Indices for Sample Email 
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you should add the index of the word into the word_indices variable. If the word does not exist, and 
is therefore not in the vocabulary, you can skip the word. 
Once you have implemented processEmail.m, the script ex6_spam.m will run your code on the 
email sample and you should see an output similar to Figure 22 & Figure 24. 
 
Octave/Matlab Tip: In Octave/Matlab, you can compare two strings with the strcmp function. For 
example, strcmp(str1, str2) will return 1 only when both strings are equal. In the provided starter 
code, vocabList is a “cellarray” containing the words in the vocabulary. In Octave/Matlab, a cell-
array is just like a normal array (i.e., a vector), except that its elements can also be strings (which they 
can’t in a normal Octave/Matlab matrix/vector), and you index into them using curly braces instead of 
square brackets. Specifically, to get the word at index i, you can use vocabList{i}. You can also 
use length(vocabList) to get the number of words in the vocabulary. 
 
You should now show the email preprocessing function to an instructor. 

4.5 Extracting Features from Emails 
You will now implement the feature extraction that converts each email into a vector in ℝ𝑛. For this 
exercise, you will be using 𝑛 = # words in vocabulary list. Specifically, the feature 𝑥𝑖 ∈ {0,1} for an 
email corresponds to whether the 𝑖-th word in the dictionary occurs in the email. That is, 𝑥𝑖 = 1 if the 
𝑖-th word is in the email and 𝑥𝑖 = 0 if the 𝑖-th word is not present in the email. 
Thus, for a typical email, this feature would look like: 

𝑥 =

[
 
 
 
 
 
 
 
 
0
⋮
1
0
⋮
1
0
⋮
0]
 
 
 
 
 
 
 
 

∈ ℝ𝑛 . 

You should now complete the code in emailFeatures.m to generate a feature vector for an email, 
given the word indices. 
Once you have implemented emailFeatures.m, the next part of ex6_spam.m will run your code on 
the email sample. You should see that the feature vector had length 1899 and 45 non-zero entries. 
 
You should now show the email feature extraction function to an instructor. 

4.6 Training SVM for Spam Classification 
After you have completed the feature extraction functions, the next step of ex6_spam.m will load a 
preprocessed training dataset that will be used to train a SVM classifier. spamTrain.mat contains 
4000 training examples of spam and non-spam email, while spamTest.mat contains 1000 test 
examples. Each original email was processed using the processEmail and emailFeatures 

functions and converted into a vector 𝑥 (𝑖) ∈ ℝ1899. 
After loading the dataset, ex6_spam.m will proceed to train a SVM to classify between spam (𝑦 = 1) 
and non-spam (𝑦 = 0) emails. Once the training completes, you should see that the classifier gets a 
training accuracy of about 99.8% and a test accuracy of about 98.5%. 

4.7 Top Predictors for Spam 

Figure 25: Top predictors for spam email 

our click remov guarante visit basenumb dollar will price pleas nbsp most lo ga dollarnumb 
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To better understand how the spam classifier works, we can inspect the parameters to see which 
words the classifier thinks are the most predictive of spam. The next step of ex6_spam.m finds the 
parameters with the largest positive values in the classifier and displays the corresponding words 
(Figure 25). Thus, if an email contains words such as “guarantee”, “remove”, “dollar”, and “price” (the 
top predictors shown in Figure 25), it is likely to be classified as spam. 

4.8 Optional (ungraded) exercise: Try your own emails 
Now that you have trained a spam classifier, you can start trying it out on your own emails. In the 
starter code, we have included two email examples (emailSample1.txt and emailSample2.txt) 
and two spam examples(spamSample1.txt and spamSample2.txt). The last part of ex6_spam.m 
runs the spam classifier over the first spam example and classifies it using the learned SVM. You should 
now try the other examples we have provided and see if the classifier gets them right. You can also try 
your own emails by replacing the examples (plain text files) with your own emails. 
 
You do not need to submit any solutions for this optional (ungraded) exercise. 

4.9 Optional (ungraded) exercise: Build your own dataset 
In this exercise, we provided a preprocessed training set and test set. These datasets were created 
using the same functions (processEmail.m and emailFeatures.m) that you now have completed. 
For this optional (ungraded) exercise, you will build your own dataset using the original emails from 
the SpamAssassin Public Corpus. 
Your task in this optional (ungraded) exercise is to download the original files from the public corpus 
and extract them. After extracting them, you should run the processEmail5 and emailFeatures 
functions on each email to extract a feature vector from each email. This will allow you to build a 
dataset X, y of examples. You should then randomly divide up the dataset into a training set, a cross 
validation set and a test set. 
While you are building your own dataset, we also encourage you to try building your own vocabulary 
list (by selecting the high frequency words that occur in the dataset) and adding any additional features 
that you think might be useful. 
Finally, we also suggest trying to use highly optimized SVM toolboxes such as LIBSVM. 
 
You do not need to submit any solutions for this optional (ungraded) exercise. 
 

                                                           
5 The original emails will have email headers that you might wish to leave out. We have included code 
in process Email that will help you remove these headers. 
 

https://spamassassin.apache.org/old/publiccorpus/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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5 MLII5 – Neural Networks – Forward Propagation 
The objective of this exercise is to get a deeper understanding of the building blocks and the 

functioning of a neural network. You will implement a neural network to recognize hand-written digits, 

using the same dataset as in a previous exercise on logistic regression in the course ML-I. Automated 

handwritten digit recognition is widely used today - from recognizing zip codes (postal codes) on mail 

envelopes to recognizing amounts written on bank checks. This exercise will show you how a neural 

network can be used for this classification task. This exercise only covers the forward-propagation to 

make predictions for unknown patterns. It uses a pre-trained parameter set. The next exercise covers 

the back-propagation, which is used for the training of the parameters. 

For this exercise you will need the following files:  

 ex3_nn.m – Octave/Matlab script that will help step you through the exercise 

 ex3data1.mat – Training set of hand-written digits 

 ex3weights.mat – Initial weights for the neural network exercise 

 displayData.m – Function to help visualize the dataset 

 sigmoid.m - Sigmoid function 

 predict.m*) – Neural network prediction function 

You will have to modify the files marked with *) . 

Throughout the exercise, you will be using the script ex3_nn.m. This script sets up the dataset for the 
problems and makes calls to functions that you will write. You do not need to modify the script. You 
are only required to modify functions in other files, by following the instructions in this assignment. 

5.1 Dataset 
You are given a data set in ex3data1.mat that contains 5000 training examples of handwritten digits.6 
The .mat format means that that the data has been saved in a native Octave/Matlab matrix format, 
instead of a text (ASCII) format like a csv-file. These matrices can be read directly into your program 
by using the load command. After loading, matrices of the correct dimensions and values will appear 
in your program’s memory. The matrix will already be named, so you do not need to assign names to 
them. 

There are 5000 training examples in ex3data1.mat, where each training example is a 20 pixel by 20 
pixel grayscale image of the digit. Each pixel is represented by a floating point number indicating the 
grayscale intensity at that location. The 20 by 20 grid of pixels is “unrolled” into a 400-dimensional 
vector. Each of these training examples becomes a single row in our data matrix 𝑋. This gives us a 5000 

by 400 matrix �̂� where every row is a training example for a handwritten digit image. 

�̂� =

[
 
 
 
 −(𝑥 (1))

𝑇
−

−(𝑥 (2))
𝑇

−

⋮

−(𝑥 (𝑚))
𝑇

−]
 
 
 
 

 

                                                           
6 This is a subset of the MNIST handwritten digit dataset (http://yann.lecun.com/exdb/mnist/). 

% Load saved matrices from file 

load('ex3data1.mat'); 

% The matrices X and y will now be in your Octave environment 

http://yann.lecun.com/exdb/mnist/
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The second part of the training set is a 5000-dimensional vector 𝑦  that contains labels for the training 
set. To make things more compatible with Octave/Matlab indexing, where there is no zero index, we 
have mapped the digit zero to the value ten. Therefore, a “0” digit is labeled as “10”, while the digits 
“1” to “9” are labeled as “1” to “9” in their natural order. 

5.2 Visualizing the data 
You will begin by visualizing a subset of the training set. In Part 1 of ex3_nn.m, the code randomly 

selects 100 rows from �̂� and passes those rows to the displayData function. This function maps 
each row to a 20 pixel by 20 pixel grayscale image and displays the images together. We have provided 
the displayData function, and you are encouraged to examine the code to see how it works. After 
you run this step, you should see an image like Figure 26. 
 

 

Figure 26: Examples from the dataset 

5.3 Model representation 
Our neural network is shown in  

Figure 27. It has 3 layers – an input layer, a hidden layer and an output layer. Recall that our inputs 

are pixel values of digit images. Since the images are of size 20×20, this gives us 400 input layer units 

(excluding the extra bias unit which always outputs +1). As before, the training data will be loaded 

into the variables �̂� and 𝑦 . 

You have been provided with a set of network parameters (θ̂(1), θ̂(2)) already trained by us. These are 

stored in ex3weights.mat and will be loaded by ex3_nn.m into 𝑇ℎ𝑒𝑡𝑎1 and 𝑇ℎ𝑒𝑡𝑎2. The 
parameters have dimensions that are sized for a neural network with 25 units in the second layer and 
10 output units (corresponding to the 10 digit classes). 

% Load saved matrices from file 

load('ex3weights.mat'); 

% The matrices Theta1 and Theta2 will now be in your Octave 

% environment 

% Theta1 has size 25 x 401 

% Theta2 has size 10 x 26 
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Figure 27: Network Architecture – Forward Propagation 

5.4 Feedforward Propagation and Prediction 
Now you will implement feedforward propagation for the neural network. You will need to complete 
the code in predict.m to return the neural network’s prediction. 

You should implement the feedforward computation that computes ℎθ(𝑥 
(𝑖)) for every example 𝑖 and 

returns the associated predictions. Similar to the one-vs-all classification strategy in logistic regression, 

the prediction from the neural network will be the label that has the largest output (ℎθ(𝑥 ))𝑘
. 

 

Implementation Note: The matrix �̂� contains the examples in rows. When you complete the code in 
predict.m, you will need to add the column of 1’s to the matrix. The matrices 𝑇ℎ𝑒𝑡𝑎1 and 𝑇ℎ𝑒𝑡𝑎2 
contain the parameters for each unit in rows. Specifically, the first row of 𝑇ℎ𝑒𝑡𝑎1 corresponds to the 

first hidden unit in the second layer. In Octave/Matlab, when you compute 𝑧 (2) = θ̂(1)𝑎 (1), be sure that 

you index (and if necessary, transpose) �̂� correctly so that you get 𝑎 (𝑙) as a column vector. 
 
Once you are done, ex3_nn.m will call your predict function using the loaded set of parameters for 
𝑇ℎ𝑒𝑡𝑎1 and 𝑇ℎ𝑒𝑡𝑎2. You should see that the accuracy is about 97.5%. After that, an interactive 
sequence will launch displaying images from the training set one at a time, while the console prints 
out the predicted label for the displayed image. To stop the image sequence, press Ctrl-C. 
 
You should now show the neural network prediction function to an instructor. 

+1 +1 𝜃(1) 𝜃(2) 

ℎ⃗ 𝜃(𝑥 ) 

𝑎 (1) = 𝑥   

(𝑎𝑑𝑑 𝑎0
(1)

)  

𝑧 (2) = 𝜃(1)𝑎 (1)  

𝑎 (2) = 𝑔(𝑧 (2))  

(𝑎𝑑𝑑 𝑎0
(2)

)  

𝑧 (3) = 𝜃(2)𝑎 (2)  

𝑎 (3) = 𝑔(𝑧 (3)) = ℎ⃗ 𝜃(𝑥 )  

Input Layer Hidden Layer Output Layer 
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6 MLII6 – Neural Networks – Backward Propagation 
The objective of this exercise is to get a deeper understanding of how the training of a neural network 

is done. By implementing the cost function and the gradient of the cost function using the 

backpropagation algorithm you should realize that the general training procedure is the same as in the 

case of linear or logistic regression. The implemented cost function and gradient are used to train a 

neural network classifier for predicting handwritten characters, using the same dataset as in a previous 

exercise.   

For this exercise you will need the following files:  

 ex4.m – Octave/Matlab  script that will help step you through the exercise 

 ex4data1.mat – Training set of hand-written digits 

 ex4weights.mat – Neural network parameters  
 displayData.m – Function to help visualize the dataset 

 fmincg.m – Function minimization routine (similar to fminunc) 

 sigmoid.m – Sigmoid function 

 computeNumericalGradient.m – Numerically compute gradients 

 checkNNGradients.m – Function to help check your gradients 

 debugInitializeWeights.m – Function for initializing weights 

 predict.m – Neural network prediction function 

 sigmoidGradient.m*) – Compute the gradient of the sigmoid function 

 randInitializeWeights.m*) – Randomly initialize weights 

 nnCostFunction.m*) - Neural network cost function 

You will have to modify the files marked with *) . 

The script ex4.m will guide you through the exercise step by step. This script will load necessary 

datasets and calls the functions you have implemented. The instructions for the implementation of the 

functions are described in this document. 

6.1 Neural Networks 
In the previous exercise, you implemented feedforward propagation for neural networks and used it 

to predict handwritten digits with the weights we provided. In this exercise, you will implement the 

backpropagation algorithm to learn the parameters for the neural network. 

The provided script, ex4.m, will help you step through this exercise. 

6.1.1 Visualizing the data 

In the first part of ex4.m, the code will load the data and display it on a 2-dimensional plot (Figure 28) 

by calling the function displayData. 

This is the same dataset that you used in the previous exercise. There are 5000 training examples in 

ex4data1.mat, where each training example is a 20 pixel by 20 pixel grayscale image of the digit. 

Each pixel is represented by  
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Figure 28: Examples from the dataset 

a floating point number indicating the grayscale intensity at that location. The 20 by 20 grid of pixels is 

“unrolled” into a 400-dimensional vector. Each of these training examples becomes a single row in our 

data matrix �̂�. This gives us a 5000 by 400 matrix �̂� where every row is a training example for a 

handwritten digit image. 

�̂� =

[
 
 
 
 
 

   

− (𝑥 (1))
𝑇

−

− (𝑥 (2))
𝑇

−

 ⋮  

− (𝑥 (𝑚))
𝑇

−
   ]

 
 
 
 
 

 

The second part of the training set is a 5000-dimensional vector 𝑦  that contains labels for the training 

set. To make things more compatible with Octave/Matlab indexing, where there is no zero index, we 

have mapped the digit zero to the value ten. Therefore, a “0” digit is labeled as “10”, while the digits 

“1” to “9” are labeled as “1” to “9” in their natural order. 

6.1.2 Model representation 

Our neural network is shown in Figure 29. It has 3 layers – an input layer, a hidden layer and an output 

layer. Recall that our inputs are pixel values of digit images. Since the images are of size 20 × 20, this 

gives us 400 input layer units (not counting the extra bias unit which always outputs +1). The training 

data will be loaded into the variables X and y by the ex4.m script. 

You have been provided with a set of network parameters (�̂�(1), �̂�(2)) already trained by us. These 

are stored in ex4weights.mat and will be loaded by ex4.m into Theta1 and Theta2. The 

parameters have dimensions that are sized for a neural network with 25 units in the second layer and 

10 output units (corresponding to the 10 digit classes). 

 
 

 

 

 

% Load saved matrices from file 

load('ex4weights.mat'); 

% The matrices Theta1 and Theta2 will now be in your workspace 

% Theta1 has size 25 x 401 

% Theta2 has size 10 x 26 
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Figure 29: Neural network model. 

6.1.3 Feedforward and cost function 

Now you will implement the cost function and gradient for the neural network. First, complete the 

code in nnCostFunction.m to return the cost. 

Recall that the cost function for the neural network (without regularization) is 

𝐽(𝜃) =
1

𝑚
∑ ∑ [−𝑦𝑘

(𝑖)
log ((ℎ𝜃(𝑥 (𝑖)))

𝑘
) − (1 − 𝑦𝑘

(𝑖)
) log (1 − (ℎ𝜃(𝑥 (𝑖)))

𝑘
)] ,

𝐾

𝑘=1

𝑚

𝑖=1

 

where ℎ⃗ 𝜃(𝑥 (𝑖))  is computed as shown in the Figure 29 and 𝐾 = 10 is the total number of possible 

labels. Note that ℎ𝜃(𝑥 (𝑖))
𝑘
 =  𝑎𝑘

(3)
 is the activation (output value) of the 𝑘 − 𝑡ℎ output unit. Also, 

recall that whereas the original labels (in the variable y) were 1, 2, ..., 10, for the purpose of training a 

neural network, we need to recode the labels as vectors containing only values 0 or 1, so that 

𝑦 =

[
 
 
 
 
 

 
1
0
0
⋮
0
 ]
 
 
 
 
 

 ,

[
 
 
 
 
 

 
0
1
0
⋮
0
 ]
 
 
 
 
 

 , … 𝑜𝑟      

[
 
 
 
 
 

 
1
0
0
⋮
0
 ]
 
 
 
 
 

  . 

For example, if 𝑥 (𝑖) is an image of the digit 5, then the corresponding 𝑦 (𝑖) (that you should use with 

the cost function) should be a 10-dimensional vector with 𝑦5 = 1, and the other elements equal to 0. 

You should implement the feedforward computation that computes ℎ⃗ 𝜃(𝑥 (𝑖)) for every example 𝑖 and 

sum the cost over all examples. For implementing the feedforward propagation you might reuse your 

solution from previous section. However, take care that your code should also work for a dataset of 

any size, with any number of labels (you can assume that there are always at least 𝐾 ≥ 3 labels). 

+1 +1 
𝜃(1) 𝜃(2) 

ℎ⃗ 𝜃(𝑥 ) 

𝑎 (1) = 𝑥   

(𝑎𝑑𝑑 𝑎0
(1)

)  

𝑧 (2) = 𝜃(1)𝑎 (1)  

𝑎 (2) = 𝑔(𝑧 (2))  

(𝑎𝑑𝑑 𝑎0
(2)

)  

𝑧 (3) = 𝜃(2)𝑎 (2)  

𝑎 (3) = 𝑔(𝑧 (3)) = ℎ⃗ 𝜃(𝑥 )  

Input Layer Hidden Layer Output Layer 
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Implementation Note: The matrix X contains the examples in rows (i.e., X(i,:)' is the 𝑖 − 𝑡ℎ training 

example 𝑥 (𝑖), expressed as a 𝑛 × 1 vector.) When you complete the code in nnCostFunction.m, you 

will need to add the column of 1’s to the X matrix. The parameters for each unit in the neural network 

is represented in Theta1 and Theta2 as one row. Specifically, the first row of Theta1 corresponds to 

the first hidden unit in the second layer. You can use a for-loop over the examples to compute the cost. 

Once you are done, ex4.m will call your nnCostFunction using the loaded set of parameters for 

Theta1 and Theta2. You should see that the cost is about 0.287629. 

You should now show the neural network cost function (feedforward) to an instructor. 

6.1.4 Regularized cost function 

The cost function for neural networks with regularization is given by 

𝐽(𝜃) =
1

𝑚
∑ ∑ [−𝑦𝑘

(𝑖)
log ((ℎ𝜃(𝑥 (𝑖)))

𝑘
) − (1 − 𝑦𝑘

(𝑖)
) log (1 − (ℎ𝜃(𝑥 (𝑖)))

𝑘
)]

𝐾

𝑘=1

𝑚

𝑖=1

+ 

𝜆

2𝑚
[∑ ∑(𝜃𝑗,𝑘

(1)
)
2

+ ∑ ∑(𝜃𝑗,𝑘
(2)

)
2

25

𝑘=1

10

𝑗=1

400

𝑘=1

25

𝑗=1

] . 

You can assume that the neural network will only have 3 layers – an input layer, a hidden layer and an 

output layer. However, your code should work for any number of input units, hidden units and outputs 

units. While we have explicitly listed the indices above for �̂�(1) and �̂�(2) for clarity, do note that your 

code should in general work with �̂�(𝟏) and �̂�(𝟐) of any size. 

Note that you should not be regularizing the terms that correspond to the bias. For the matrices 

Theta1 and Theta2, this corresponds to the first column of each matrix. You should now add 

regularization to your cost function. Notice that you can first compute the unregularized cost function 

J using your existing nnCostFunction.m and then later add the cost for the regularization terms. 

Once you are done, ex4.m will call your nnCostFunction using the loaded set of parameters for 

Theta1 and Theta2, and 𝜆 = 1. You should see that the cost is about 0.383770. 

You should now show the regularized neural network cost function (feed-forward) to an instructor. 

6.2 Backpropagation 
In this part of the exercise, you will implement the backpropagation algorithm to compute the gradient 

for the neural network cost function. You will need to complete the nnCostFunction.m so that it 

returns an appropriate value for grad. Once you have computed the gradient, you will be able to train 

the neural network by minimizing the cost function 𝐽(𝛩) using an advanced optimizer such as fmincg. 

You will first implement the backpropagation algorithm to compute the gradients for the parameters 

for the (unregularized) neural network. After you have verified that your gradient computation for the 

unregularized case is correct, you will implement the gradient for the regularized neural network. 

6.2.1 Sigmoid gradient 

To help you get started with this part of the exercise, you will first implement the sigmoid gradient 

function. The gradient for the sigmoid function can be computed as 
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𝑔′(𝑧) =
𝑑

𝑑𝑧
𝑔(𝑧) = 𝑔(𝑧)(1 − 𝑔(𝑧)) 

where 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = 𝑔(𝑧) =
1

1 + 𝑒−𝑧
 . 

When you are done, try testing a few values by calling sigmoidGradient(z) at the Octave command 

line. For large values (both positive and negative) of 𝑧, the gradient should be close to 0. When 𝑧 = 0, 

the gradient should be exactly 0.25. Your code should also work with vectors and matrices. For a matrix, 

your function should perform the sigmoid gradient function on every element. 

You should now show the sigmoid gradient function to an instructor. 

6.2.2 Random initialization 

When training neural networks, it is important to randomly initialize the parameters for symmetry 

breaking. One effective strategy for random initialization is to randomly select values for �̂�(l) uniformly 

in the range [− ∈𝑖𝑛𝑖𝑡, ∈𝑖𝑛𝑖𝑡]. You should use ∈𝑖𝑛𝑖𝑡= 0.127. This range of values ensures that the 

parameters are kept small and makes the learning more efficient. 

Your job is to complete randInitializeWeights.m to initialize the weights for �̂�(l) . Modify the file 

and fill in the following code:  

 

You do not need to submit any code for this part of the exercise. 

  

                                                           
7 One effective strategy for choosing  ∈𝑖𝑛𝑖𝑡 is to base it on the number of units in the network. A good choice of 

∈𝑖𝑛𝑖𝑡 is  ∈𝑖𝑛𝑖𝑡=
√6

√𝐿𝑖𝑛+𝐿𝑜𝑢𝑡
 , where 𝐿𝑖𝑛 = sl and 𝐿𝑜𝑢𝑡 = sl+1 are the number of units in the layers adjacent to 𝛩(l). 

 

% Randomly initialize the weights to small values 

epsilon init = 0.12; 

W = rand(L_out, 1 + L_in) * 2 * epsilon_init – epsilon_init; 
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6.2.3 Backpropagation 

   

Figure 30: Backpropagation Updates 

Now, you will implement the backpropagation algorithm. Recall that the intuition behind the 

backpropagation algorithm is as follows. Given a training example (𝑥 (𝑡), 𝑦 (𝑡)), we will first run a 

“forward pass” to compute all the activations throughout the network, including the output value of 

the hypothesis ℎ⃗ 𝛩(𝑥 ). Then, for each node j in layer 𝑙, we would like to compute an “error term” 𝛿𝑗
(𝑙)

 

that measures how much that node was “responsible” for any errors in our output. 

For an output node, we can directly measure the difference between the network’s activation and the 

true target value, and use that to define 𝛿𝑗
(3)

 (since layer 3 is the output layer). For the hidden units, 

you will compute 𝛿𝑗
(𝑙)

 based on a weighted average of the error terms of the nodes in layer (𝑙 + 1). 

In detail, here is the backpropagation algorithm (also depicted in Figure 30). You should implement 

steps 1 to 4 in a loop that processes one example at a time. Concretely, you should implement a for-

loop for t=1:m and place steps 1-4 below inside the for-loop, with the 𝑡𝑡ℎ iteration performing the 

calculation on the tth training example (𝑥 (𝑡), 𝑦 (𝑡)). Step 5 will divide the accumulated gradients by m 

to obtain the gradients for the neural network cost function. 

1. Set the input layer’s values (a⃗ (1)) to the t-th training example 𝑥 (𝑡). Perform a feedforward 

pass (Figure 29), computing the activations (𝑧 (2), 𝑎 (2), 𝑧 (3), 𝑎 (3)) for layers 2 and 3. Note that 

you need to add a +1 term to ensure that the vectors of activations for layers 𝑎 (1) and 𝑎 (2) 

also include the bias unit. In Octave, a_1 is a column vector, adding one corresponds to a_1=[1 

; a_1]. 

2. For each output unit 𝑘 in layer 3 (the output layer), set 

𝛿𝑘
(3)

 =  (𝑎𝑘
(3)

− 𝑦𝑘) 

where 𝑦𝑘 ∈ {0,1} indicates whether the current training example belongs to class 

𝑘 (𝑦𝑘 = 1), or if it belongs to a different class (yk = 0). You may find logical arrays helpful 

for this task (explained in the pre-vious programming exercise). 

3. For the hidden layer l = 2, set 

+1 +1 𝜃(1) 𝜃(2) 

ℎ⃗ 𝜃(𝑥 ) 

𝛿 (2) = (�̂�(2))
𝑇
𝛿 (3).∗ 𝑔′(𝑧 (2))  

(𝑟𝑒𝑚𝑜𝑣𝑒 𝛿0
(2)

)  

𝛿 (3) = 𝛼 (3) − 𝑦   

Input Layer Hidden Layer Output Layer 
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𝛿 (2) = �̂�(2)𝑇𝛿 (3).∗ 𝑔′(𝑧 (2)) 

4. Accumulate the gradient from this example using the following formula. Note that you 

should skip or remove 𝛿0
(2)

. In Octave, removing 𝛿0
(2)

 corresponds to delta_2=delta 2(2:end). 

∆̂(𝑙)= ∆̂(𝑙) + 𝛿 (𝑙+1)(𝑎 (𝑙))
𝑇

 

5. Obtain the (unregularized) gradient for the neural network cost function by multiplying the 

accumulated gradients by 
1

𝑚
: 

𝜕

𝜕𝜃𝑖𝑗
(𝑙)

𝐽(𝜃) = 𝐷𝑖𝑗
(𝑙)

=
1

𝑚
∆𝑖𝑗

(𝑙)
 

Octave Tip: You should implement the backpropagation algorithm only after you have successfully 

completed the feedforward and cost functions. While implementing the backpropagation algorithm, it 

is often useful to use the size function to print out the sizes of the variables you are working with if you 

run into dimension mismatch errors (“nonconformant arguments” errors in Octave). 

After you have implemented the backpropagation algorithm, the script ex4.m will proceed to run 

gradient checking on your implementation. The gradient check will allow you to increase your 

confidence that your code is computing the gradients correctly. 

6.2.4 Gradient checking 

In your neural network, you are minimizing the cost function 𝐽(𝛩). To perform gradient checking on 

your parameters, you can imagine “unrolling” the parameters �̂�(1), �̂�(2) into a long vector 𝜃 . By doing 

so, you can think of the cost function being 𝐽(𝜃) instead and use the following gradient checking 

procedure. 

Suppose you have a function 𝑓𝑖(�⃗� ) that purportedly computes 
𝜕

𝜕𝜃𝑖
𝐽(�⃗� ); you’d like to check if𝑓𝑖  is 

outputting correct derivative values. 

𝐿𝑒𝑡    𝜃 (𝑖+) = 𝜃 +

[
 
 
 
 
 
 

 
0
0
⋮
∈
⋮
 0
 ]
 
 
 
 
 
 

    𝑎𝑛𝑑    𝜃 (𝑖−) = 𝜃 −

[
 
 
 
 
 
 

 
0
0
⋮
∈
⋮
 0
 ]
 
 
 
 
 
 

 

So, 𝜃 (𝑖+) is the same as 𝜃 , except its i-th element has been incremented by ∈. Similarly, 𝜃 (𝑖−) is the 

corresponding vector with the i-th element decreased by ∈. You can now numerically verify 𝑓𝑖(�⃗� ) ‘s 

correctness by checking, for each i, that: 

𝑓𝑖(�⃗� ) ≈
𝐽(𝜃 (𝑖+)) − 𝐽(𝜃 (𝑖−))

2 ∈
 

The degree to which these two values should approximate each other will depend on the details of 𝐽. 

But assuming ∈= 10−4, you’ll usually find that the left- and right-hand sides of the above will agree to 

at least 4 significant digits (and often many more). 
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We have implemented the function to compute the numerical gradient for you in 

computeNumericalGradient.m. While you are not required to modify the file, we highly encourage 

you to take a look at the code to understand how it works. 

In the next step of ex4.m, it will run the provided function checkNNGradients.m which will create 

a small neural network and dataset that will be used for checking your gradients. If your 

backpropagation implementation is correct, you should see a relative difference that is less than 1e −

9. 

Practical Tip: When performing gradient checking, it is much more efficient to use a small neural 

network with a relatively small number of input units and hidden units, thus having a relatively small 

number of parameters. Each dimension of 𝛩 requires two evaluations of the cost function and this can 

be expensive. In the function checkNNGradients, our code creates a small random model and 

dataset which is used with computeNumericalGradient for gradient checking. Furthermore, after 

you are confident that your gradient computations are correct, you should turn off gradient checking 

before running your learning algorithm. 

Practical Tip: Gradient checking works for any function where you are computing the cost and the 

gradient. Concretely, you can use the same computeNumericalGradient.m function to check if 

your gradient implementations for the other exercises are correct too (e.g., logistic regression’s cost 

function). 

Once your cost function passes the gradient check for the (unregularized) neural network cost 

function, you should show the neural network gradient function (backpropagation) to an instructor. 

6.2.5 Regularized Neural Networks 

After you have successfully implemented the backpropagation algorithm, you will add regularization 

to the gradient. To account for regularization, it turns out that you can add this as an additional term 

after computing the gradients using backpropagation. Specifically, after you have computed ∆𝑖𝑗
(𝑙)

 

using backpropagation, you should add regularization using 

𝜕

𝜕𝜃𝑖𝑗
(𝑙)

𝐽(𝜃) = 𝐷𝑖𝑗
(𝑙)

=
1

𝑚
∆𝑖𝑗

(𝑙)                             𝑓𝑜𝑟 𝑗 = 0 

 

𝜕

𝜕𝜃𝑖𝑗
(𝑙)

𝐽(𝜃) = 𝐷𝑖𝑗
(𝑙)

=
1

𝑚
∆𝑖𝑗

(𝑙) +
𝜆

𝑚
𝜃𝑖𝑗

(𝑙)            𝑓𝑜𝑟 𝑗 ≥ 1 

Note that you should not be regularizing the first column of 𝜃(𝑙) which is used for the bias term. 

Furthermore, in the parameters 𝜃𝑖𝑗
(𝑙), 𝑖 is indexed starting from 1, and 𝑗 is indexed starting from 0. 

Thus, 

𝜃(𝑙) = [

𝜃1,0
(𝑙) 𝜃1,1

(𝑙) ⋯

𝜃2,0
(𝑙) 𝜃2,1

(𝑙)  

⋮  ⋱

]    . 
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Somewhat confusingly, indexing in Octave starts from 1 (for both 𝑖 and 𝑗), thus Theta1(2, 1) 

actually corresponds to 𝜃2,0
(𝑙)

 (i.e., the entry in the second row, first column of the matrix 𝜃(1)  shown 

above). 

Now modify your code that computes grad in nnCostFunction to account for regularization. After 

you are done, the ex4.m script will proceed to run gradient checking on your implementation. If your 

code is correct, you should expect to see a relative difference that is less than 1e-9.  

You should now show your regularized neural network gradient to an innstructor. 

6.2.6 Learning parameters using fmincg 

After you have successfully implemented the neural network cost function and gradient 

computation, the next step of the ex4.m script will use fmincg to learn a good set parameters. 

After the training completes, the ex4.m script will proceed to report the training accuracy of your 

classifier by computing the percentage of examples it got correct. If your implementation is correct, 

you should see a reported training accuracy of about 95.3% (this may vary by about 1% due to the 

random initialization). It is possible to get higher training accuracies by training the neural network 

for more iterations. We encourage you to try training the neural network for more iterations (e.g., 

set MaxIter to 400) and also vary the regularization parameter 𝜆. With the right learning settings, it 

is possible to get the neural network to perfectly fit the training set. 

6.3 Visualizing the hidden layer 
One way to understand what your neural network is learning is to visualize the representations 

captured by the hidden units. Informally, given a particular hidden unit, one way to visualize what it 

computes is to find an input 𝑥  that will cause it to activate (that is, to have an activation value (𝑎𝑖
(𝑙)

) 

close to 1). For the neural network you trained, notice that the 𝑖𝑡ℎ row of 𝜃(1) is a 401-dimensional 

vector that represents the parameter for the 𝑖𝑡ℎ hidden unit. If we discard the bias term, we get a 

400 dimensional vector that represents the weights from each input pixel to the hidden unit. 

Thus, one way to visualize the “representation” captured by the hidden unit is to reshape this 400 

dimensional vector into a 20 × 20 image and display it.8 The next step of ex4.m does this by using the 

displayData function and it will show you an image (similar to Figure 31) with 25 units, each 

corresponding to one hidden unit in the network. 

In your trained network, you should find that the hidden units correspond roughly to detectors that 

look for strokes and other patterns in the input. 

                                                           
8 It turns out that this is equivalent to finding the input that gives the highest activation for the hidden unit, 

given a “norm” constraint on the input  (𝑖. 𝑒. , ‖𝑥‖2 ≤ 1). 
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Figure 31: Visualization of Hidden Units. 

6.4 Network Performance (optional) 
In this part of the exercise, you will get to try out different learning settings for the neural network to 

see how the performance of the neural network varies with the regularization parameter 𝜆 and 

number of training steps (the MaxIter option when using fmincg). 

Neural networks are very powerful models that can form highly complex decision boundaries. 

Without regularization, it is possible for a neural network to “overfit” a training set so that it obtains 

close to 100% accuracy on the training set but does not as well on new examples that it has not seen 

before. You can set the regularization 𝜆 to a smaller value and the MaxIter parameter to a higher 

number of iterations to see this for youself. 

You will also be able to see for yourself the changes in the visualizations of the hidden units when 

you change the learning parameters 𝜆  and MaxIter. 

You do not need to submit any solutions for this optional (ungraded) exercise. 

 



43 

7 MLII7 – Convolutional Neural Network 
The objective of this exercise is get a thorough understanding of the fundamental building blocks, the 

architecture and the functioning of convolutional neural networks (CNN). Furthermore you should be 

able to explain why CNNs are especially well suited for the classification of images and design and train 

appropriate networks for this kind of applications. Finally, you should get an impression of the effect 

on the training time when using GPUs instead of CPUs and be able to assess why the availability of 

cheap GPUs is a driver for artificial intelligence technologies.  

For this exercise you will need the following files:  

 exCNN.m – Octave/Matlab  script that will help step you through the exercise 

 crossCorr1D – Function to calculate a cross-correlation in one dimension 

 crossCorr2D – Function to calculate a cross-correlation in one dimension 

 defineONN.m*) – Function to define the layers of an ordinary neural network 

 defineCNN.m
*) – Function to define the layers of a convolutional neural network 

 DigitTraing3D.mat – Training set of handwritten digits from the MNIST dataset 

 DigitValidation3D.mat – Validation set of handwritten digits from the MNIST dataset 

 displayData.m – Function to help visualize the dataset 
 
You will have to modify the files marked with *) . 

The script exCNN.m will guide you through the exercise step by step. This script will load necessary 

datasets and calls the functions you have implemented. The instructions for the implementation of 

the functions are described in this document. 

7.1 One-Dimensional Cross Correlation (Convolution) 
Convolutional Neural Networks are named after the mathematical convolution operation that is used 

to extract spatial features from images. Actually, instead of the convolution the cross-correlation 

operation is used. The only difference between these operations is a sign prefix, which is totally 

irrelevant for the purpose of learning features. So in this and the next part we will have an in depth 

look at the cross-correlation operation, first in one dimension and then in two dimensions. In this 

part of the exercise, you will implement the cross-correlation in one dimension and examine its 

behaviour for different kernel or filter functions.  

The cross-correlation combines two functions, a signal function 𝑓 ∈ ℝ with a kernel function 𝑔 ∈ ℝ. 

𝑧(𝑥) = (𝑔 ⋆ 𝑓)(𝑥) = ∫ 𝑔(𝑥′)𝑓(𝑥 + 𝑥′)

∞

−∞

𝑑𝑥′ 

The resulting function 𝑧 ∈ ℝ yields high values at all positions 𝑥, where the signal 𝑓 is similar to the 

kernel 𝑔. So, if 𝑔 describes a certain characteristic or feature, we can extract this feature from the 

input signal 𝑓 and its position. I.e., with a proper chosen 𝑔, we can detect positive or negative edges, 

spikes or any other patterns in 𝑓.  

In a computer, a function has to be discretized and represented by a limited series of values. We will 

describe the values of the signal function by a vector 𝑥  of size 𝑛 and the filter by a vector 𝜃  of size𝑓. 

The names 𝑥  and 𝜃  are wilfully chosen. They express their meaning in neural networks as the input 

signal (features) and the learnable weights or parameters. 
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Figure 32 shows an example of a cross-correlation between an input signal 𝑥  with 𝑚 = 9 and a filter 

𝜃  with 𝑓 = 3. In the discretized form the integral in the cross-correlation becomes a sum and the 𝑖-th 

element of the output vector 𝑧  is calculated by 

𝑧𝑖 = ∑ 𝑥𝑘+(𝑖−1)

𝑓

𝑘=1

𝜃𝑘 = 𝑥 𝑖:𝑖+𝑓−1
𝑇 ∙ 𝜃  

 

In the figure and the formula, two observations are worth to be mentioned: a) The summation just 

goes over 1 to 𝑓. In fact, the sum can be done by a dot product between the filter and a patch of the 

input signal (with the same size as the filter size) located at position 𝑖 + 𝑓/2. b) The size of the 

output signal is smaller than the size of the input signal (𝑧 ∈ ℝ𝑛−𝑓+1). In order to apply the filter to a 

full patch of the input signal, the center of the first patch lies at 𝑓/2, whereas the center of the last 

patch lies at 𝑛 − 𝑓/2. This yields to the problem, that the first and the last elements of the input 

signal are less counted in the cross-correlation than those in the middle are. (In the example, the 

elements in the middle are considered three times whereas the first one is only considered once.) 

This problem is addressed by "zero padding". We expand the input vector 𝑥  by adding a certain 

number 𝑝 of zeros before and after the original values. The dimension of the new, expanded input 

vector is 𝑛 + 2𝑝. The cross-correlation on the expanded vector can be done in the same way as on 

the original input vector (see Figure 33). But now, the dimension of the output vector 𝑧  is increased 

by 2𝑝 as well, i.e. 𝑧 ∈ ℝ𝑛+2𝑝−𝑓+1. In principle, the number of padded zeros 𝑝 can be arbitrary, but 

often 𝑝 is chosen so that the output vector has the same size as the original input vector. 

 

 

 

 

Figure 32: Cross-correlation of two discrete signals in one dimension 
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Figure 33: Cross-correlation with Zero-Padding 

 

In normal cross-correlation the kernel is moved over the input vector value by value, i.e. with a step 

size of one. Sometimes, in CNN´s another step size is used. This is called the stride 𝑠.  When using an 

arbitrary stride 𝑠, the formula for the cross-correlation and the dimension of the output vector 

change as follows:  

𝑧𝑖 = ∑ 𝑥𝑘+𝑠(𝑖−1)

𝑓

𝑘=1

𝜃𝑘 = 𝑥 𝑠(𝑖−1)+1:𝑠(𝑖−1)+𝑓
𝑇 ∙ 𝜃   

𝑧 ∈ ℝ(𝑛+2𝑝−𝑓)/𝑠+1 

7.1.1 Implement one dimensional cross-correlation   

Now you should implement the 1D-cross-correlation in the function crossCorr1D.m. The function 

is provided with the input signal 𝑥 , the kernel 𝜃 , the number 𝑝 of zeros to be used for padding and 

the stride 𝑠. You should first add 𝑝 zeros at the beginning and the end of the vector 𝑥 . Then 

determine the size 𝑛𝑧 of the output vector 𝑧 . You can do the calculation of the elements 𝑧𝑖  in a for-

loop. To calculate a single 𝑧𝑖  use the dot product (matrix multiplication) for the convolution of the 

kernel with a patch of the input vector at position 𝑖. 

The script exCNN.m will now call your function with some test data. It should output: 6 -2 -1 -2 

-1. 

You should now show your one dimensional cross-correlation to an instructor. 

7.1.2 Apply different filters 

Now we will apply our crossCorr1D function on a test data set to examine the behaviour of 

different filter functions. Figure 34 shows the test data set. The input signal exhibits certain 

characteristics like positive and negative edges as well as specific patterns, a sawtooth and a 

rectangle pattern. By convoluting the input signal with appropriate filter functions, we will try to 

detect these characteristics. 
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Figure 34: Sample input signal for 1D convolution 

7.1.2.1 Edge detection 

A kernel with 𝜃 𝑇 = (−1 0 1) will highlight signal positions 𝑥𝑖 where 𝑥𝑖−1 is small or negative and 

𝑥𝑖+1 is high and positive, i.e. where the signal has a positive edge. Let´s have a look at position 81 in 

the input signal where we find the values (0 1 1), a positive edge, and at the position 84, where 

we find the values (1 1 1), a plateau. The dot product of the kernel at these positions yields: 

(𝑥80 𝑥81 𝑥82) ∙ (

𝜃1

𝜃2

𝜃3

) = (0 1 1) ∙ (
−1
0
1

) = 0 ∙ −1 + 1 ∙ 0 + 1 ∙ 1 = 1 

(𝑥83 𝑥84 𝑥85) ∙ (
𝜃1

𝜃2

𝜃3

) = (1 1 1) ∙ (
−1
0
1

) = 1 ∙ −1 + 1 ∙ 0 + 1 ∙ 1 = 0 

In the same way, we can detect negative edges with a kernel 𝜃 𝑇 = (1 0 −1). Figure 35 shows the 

results of convolving the input signal with the positive edge detection kernel (left) and the negative 

edge detection kernel (right). The convolution yields the highest results where the edges are most 

pronounced.  

 

Figure 35: 1D convolution with edge detection kernels 
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7.1.2.2 Pattern detection 

We can also search for very specific patterns in a signal. The cross correlation output is higher the 

more the input signal matches the kernel pattern. The cross correlation is a measure of similarity of 

two functions. If our kernel has the shape of a sawtooth and we move it over the input signal, we will 

get the highest results where the same sawtooth pattern occurs in the input signal. This can be 

observed in Figure 36 (left). The green curve shows the kernel function and the red curve the 

outcome of the cross correlation of the blue input signal with the kernel. The right side of Figure 36 

depicts the same operation, but now the pattern described by the kernel is a rectangle function. 

Again, the cross correlation gives the highest peak where the kernel function exactly matches the 

input signal. 

 

Figure 36: 1D convolution with pattern detection kernels   

7.2 Two-Dimensional Cross-Correlation (Convolution)  
The 1D cross correlation can easily be enhanced for two dimensions and hence be applied on images. 

Now in the discrete case, both the input signal and the filter are two-dimensional matrices �̂� ∈ ℝ𝑛×𝑛 

and 𝜃 ∈ ℝ𝑓×𝑓 respectively. The filter slides over the image column-by-column and line-by-line. At 

each position a "dot-product" between the filter and the underlying patch of the image is calculated 

(see Figure 37). A high result means, that a certain characteristic (e.g. an edge), which is described by 

the filter, is present at this location in the image, a low value means that this characteristic is not 

present.   
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Figure 37: Calculating the cross-correlation in two dimensions 

The concepts of "zero-padding" and "stride" can also easily be applied in two dimensions. At each 

side of the input matrix we can add a number of 𝑝 zeros and then use this enhanced input matrix �̂�, 

having now the dimension (𝑛 + 𝑝) × (𝑛 + 𝑝). Furthermore, we can move the filter both horizontally 

and vertically with other strides 𝑠 than 1. The formula for calculating the 2D cross correlation is then 

given by:  

�̂� = �̂� ⋆ 𝜃:   𝑧𝑖,𝑗 = ∑ ∑ 𝑥𝑘1+𝑠(𝑖−1),𝑘2+𝑠(𝑗−1)

𝑓

𝑘2=1

𝑓

𝑘1=1

𝜃𝑘1,𝑘2
 

The dimension of the result matrix �̂� is (
𝑛+2𝑝−𝑓

𝑠
+ 1) × (

𝑛+2𝑝−𝑓

𝑠
+ 1). It is an abstraction of the 

original image, describing the image not in terms of pixel values but in terms of more abstract 

features like e.g. edges, blobs, colours, etc.. The filter or kernel determines the feature that is 

extracted from the original image. 

7.2.1 Implement two dimensional cross-correlation   

Now implement the cross correlation for two dimensions in crossCorr2D.m. Proceed in the same 

manner as for the 1D cross correlation. a) Add zeros to all sides of the matrix X according the 

parameter p. b) Calculate the dimensions nz of the output matrix Z. c) Carry out the actual cross 

correlation. The indexing of the output values z(i,j) can be done with two nested for-loops. 

Inside the for-loops, perform the "dot-product" between the filter Theta and the appropriate patch 

of the matrix X by applying elementwise matrix multiplication and the MATLAB sum function.  

You should now show your two dimensional cross-correlation to an instructor. 

7.2.2 Apply different filters 

As in the one-dimensional case, we will examine the behaviour of different filters. For this we use the 

test image shown in the top left of Figure 38. The convolution operation reveals whether and where 

certain features are present in the image. The filter parameters determine the kind of the feature.   
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E.g. with 𝜃1 = (
−2 0 −2
0 8 0

−2 0 −2
) we can detect edges, independent of their orientation. The result of 

applying this filter on the test image can be seen in the top right of Figure 38. We can also design 

more specific filters e.g. for extracting diagonal edges. The filter 𝜃2 = (
0 −1 0

−1 0 1
0 1 0

) is doing this for 

diagonal edges with a positive slope. The result is shown on the bottom left of Figure 38. Accordingly, 

the filter 𝜃3 = (
−1 −2 −1
0 0 0
1 2 1

) extracts top horizontal edges, as shown on the bottom right of 

Figure 38. The last filter is also well known as the Sobel filter in computer vision. However, for CNN´s 

the point is, that the filter parameters are not hand designed, they are learnt during the training 

phase. Thus, the training algorithm determines the features that are relevant for the classification 

task. 

 

Figure 38: Test image and results of two dimensional convolution with edge detectors  

7.3 Image Classification with Ordinary Neural Networks 

7.3.1 Visualizing the data 

In the remaining parts of this exercise, we will come back to our well-known classification task for 

handwritten digits. Again, we use a subset of the MNIST9, but other than in chapter 5 and 6 the 

images are a little bit larger (28 x 28 pixels) and more important, contain rotated digits. This makes 

the classification task a bit more complex. One hundred randomly chosen examples are shown in 

Figure 39. In total, the script exCNN.m will load 10000 images and the corresponding labels. This data 

set will be split into a training set with 7500 examples and a validation set with 2500 examples. In 

                                                           
9 MNIST handwritten digit dataset (http://yann.lecun.com/exdb/mnist/). 

http://yann.lecun.com/exdb/mnist/
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both subsets, the examples are evenly distributed among the 10 classes. Concretely, the training and 

validation examples are given in the matrices XTrain3D and XValidation3D, which are of size 

28x28x1x7500 and 28x28x1x7500, respectively. The associated label vectors YTrain and 

YValidation use the categorical values 1 to 10 to encode the digits 1 to 9 and 0.  In this and the 

next part of the exercise, we build two classifiers with this dataset based on two different models: an 

ordinary neural network and a convolutional neural network. It will be your task to setup the 

network architectures, train the models, optimize the hyperparameters and finally compare and 

discuss the results.  

 

Figure 39: Examples of the MNIST dataset of hand-written digit images  

7.3.2 Setting up the network architecture 

You will have to setup an ordinary neural network with a nearly identical architecture than we used 

before in the exercises about neural networks. We will then see how well this network performs on 

the extended dataset. The network shall have only one hidden layer with 25 neurons. The number of 

classes determines the number of output neurons (10). For the network implementation, we will 

follow the way that is given by MATLAB for the definition of deep network architectures. Within the 

Deep Learning Toolbox, MATLAB provides a variety of already implemented layer types10. A network 

architecture can be defined by instantiating the necessary layer types and put the instances in the 

desired sequence into an array. For the configuration of the different layer types refer to the 

MATLAB documentation. In MATLAB Deep Learning Toolbox all deep nets are assumed to process 3D 

volumes of data. In our case, we start with an input layer (imageInputLayer) that takes a 3D 

volume of size 28x28x1. A deep net in MATLAB must start with at least one input layer. For the 

                                                           
10 https://de.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html 
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following layers MATLAB automatically determines the input size by the output size of the preceding 

layer.  

Now define a function defineONN.m, which shall return the architecture of a simple ONN with one 

hidden layer of 25 neurons. The input and output size of the network are configurable by parameters 

inputSize and numClasses. The return value is an array of instances of the following layer types: 

 imageInputLayer: Has to be configured with the input size of the data volume. 

 fullyConnectedLayer: Configure the number neurons (25). 

 tanhLayer: A fully connected layer only performs the dot product of the input with the 

weights. The non-linear activation has to be added separately. Here use the tanh-function. 

 fullyConnectedLayer: This is the output layer. Configure the number of neurons 

according the number of classes. 

 softmaxLayer: For the output layer we take the softmax-function as the non-linear 

activation. This gives us the probabilities of the classes. 

 classificationLayer: Finally, this converts the probabilities into a class label. 

7.3.3 Tuning the hyperparameter 𝝀 

Once the network is setup properly, you can start training it with the MNIST dataset. The script 

exCNN.m will ask you to enter the regularization parameter lambda, sets this and other training 

options and starts the training. You can trace the training progress by observing the learning curves 

as shown in Figure 40. After the training finished, write down the training and validation accuracy, 

which are displayed in the Command Window of MATLAB. This procedure will be repeated 6 times. 

Your task is to find the best value for the hyperparameter 𝜆. Choose 𝜆 in the range of 0.01 to 3 with 

logarithmic step size. 

Show your results to an instructor. 

 

Figure 40: Learning curves of ONN training 
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7.4 Image Classification with Convolutional Neural Networks 
Next, we will do the classification of the MNIST dataset with a convolutional neural network. We will 

use a very simple architecture. The network consists only of two convolutional layers for extracting 

relevant features and a single fully connected layer (which is already the output layer) for doing the 

classification. The architecture is depicted in Figure 41. Since the network is already very shallow, i.e. 

the number of parameters is small, we will add only little regularization by a dropout layer after the 

second pooling layer. The dropout rate of this layer is considered as a hyperparameter. It´s your task 

to the best value of it during the training.   

 

Figure 41: CNN for classification of the MNIST dataset 

7.4.1 Setup of the network architecture 

To setup the CNN, you will have to implement the function defineCNN.m. In the same way as in the 

previous step for the ordinary neural network, you must define an array of layer instances. Besides 

the input size and the number of classes, this function defines as an additional parameter for the 

dropout rate of the second pooling layer. The sequence of layers is as follows: 

 imageInputLayer: Has to be configured with the input size of the data volume. 

 convolution2dLayer: The first convolutional layer shall comprise 15 filters of size 3x3 
and use a stride of 1 and "same" padding.  

 reluLayer: The non-linearity has to be added as a separate layer. Use the rectifying linear 
unit as the activation function.  

 maxPooling2dLayer: For downsizing the feature map by a factor of two, use a max pooling 
layer with filter size 2 and stride 2.    

 convolution2dLayer: The second convolutional layer shall comprise 20 filters of size 3x3 
and use a stride of 1 and "same" padding.  

 reluLayer: Again, use the rectifying linear unit as the activation function.  

 maxPooling2dLayer: For downsizing the previous feature map by a factor of two, use a 
max pooling layer with filter size 2 and stride 2.    

 dropoutLayer: Dropout rates can be set separately for every feature map. Here, configure 
the dropout rate of the second conv-layer with value given by the parameter dropoutrate 

 fullyConnectedLayer: This is the output layer. Configure the number of neurons 

according the number of classes. 
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 softmaxLayer: For the output layer we take the softmax-function as non-linear activation. 

This gives us the probabilities of the classes. 

 classificationLayer: Finally, this converts the probabilities into a class label. 

For the configuration of the layers, refer to the MATLAB documentation.  

7.4.2 Training and optimization  

Your next task is to train the network with different values of the dropout rate for the second conv-

layer. When continuing the script, you will be asked to enter a value for the dropout rate. After each 

training write down the dropout rate, the training accuracy, the validation accuracy and the time 

needed for the training. For the six training runs, vary the dropout rate in the range from 0% to 20%.   

You can also try to change other hyperparameters and observe the effect on the training as well as 

the results. Adjust the according trainingOptions in the script exCNN.m.  However, the pre-set 

values for the initial learning rate (0.0003), the mini batch size (128) and the number of epochs (50) 

turned out to be most suitable. 

Show your results to an instructor. 

7.4.3 GPU vs. CPU runtime 

In a final step, the script exCNN.m asks you to re-enter the dropout rate that yields the best 

performance. The network will be trained again with this dropout rate  - but instead of the GPU the 

CPU will be used for the training operations. Doing the training on the CPU will lead to a runtime 

about five times longer than with the GPU. This should give you an impression about the effect of 

using GPU´s and their importance for large machine learning problems. Note that with the current 

problem the effect of runtime reduction is very moderate, since the size of the network, the amount 

of training data and the number of features is too small to really leverage the power a parallel 

computing. 

7.4.4 Predictions  

Finally, the script uses the re-trained network to classify consecutive test images. The (intermediate) 

results of the prediction process is visualized as shown in Figure 42 . The subimages display the 

output from the four layers (from left to right): 1) the input image, 2) the 15 reduced feature maps of 

the first convolutional layer, 3) the 20 reduced feature maps of the second convolutional layer and 4) 

the class probabilities of the fully connected/softmax layer. If you flip through the images, you can 

observe the good generalization capability of the network even for very distorted and rotated digits. 

Determine the number of adaptable parameters in the ONN and the CNN and discuss the observed 

performance of ONN with CNN against this background in your final report. 
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Figure 42: Visualization of the intermediate results of CNN prediction 

7.5 References 
https://de.mathworks.com/help/deeplearning/examples/create-simple-deep-learning-network-for-

classification.html 

openExample('nnet/ConstructAndTrainAConvolutionalNeuralNetworkExample') 

http://deeplearning.stanford.edu/tutorial/ 

 

 

https://de.mathworks.com/help/deeplearning/examples/create-simple-deep-learning-network-for-classification.html
https://de.mathworks.com/help/deeplearning/examples/create-simple-deep-learning-network-for-classification.html
http://deeplearning.stanford.edu/tutorial/
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8 MLII8 – Object Detection  
- Transfer learning 

- Tensorflow 

-  

 


