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Objectives

Top-down and bottom-up attention is
influenced by social cues. We design a saliency
prediction model to integrate these cues in
dynamic social settings. Our approach is
motivated by the following findings:

• Task-driven strategies are pertinent to
predicting saliency. [1]
• Changes in motion contribute to the relevance
of an object, underlining the importance of
spatiotemporal features for predicting
saliency. [2]
• Psychological studies indicate attention is
driven by social stimuli. [3]

Overview
Saliency prediction (SP) refers to the
computational task of modeling overt attention.
Social cues greatly influence our attention,
consequently altering our eye movements and
behavior. To emphasize the efficacy of such
features, we present a neural model for
integrating social cues and weighting their
influences. Our model consists of two stages.
During the first stage, we detect two social cues
by following gaze (GF), estimating gaze
direction (GE), and recognizing affect (FER).
These features are then transformed into
spatiotemporal maps and propagated to the
second stage (GASP), where we explore late
fusion techniques for integrating social cues and
introduce two sub-networks in the Directed
Attention Module (DAM) for directing attention
to relevant stimuli.
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In the first stage (left) we extract and transform social cue features to spatiotemporal representations (Rep.: Representation).
GASP (right) acquires the representations and integrates encoded (Enc.: Encoder) features from the different modalities.

IMG: RGB Image; FDM: Fixation Density Map; PFDM: Predicted FDM; FP: Fixation Points.

Sequential Fusion

Gating weights of different sequential model variants showing the context size in parentheses. Introducing DAM allows

modalities to have a uniform contribution. RGMU: Recurrent Gated Multimodal Unit; ARGMU: Attentive RGMU.

Social Cue Ablation

GE GF FER AUC-J ↑ sAUC ↑ CC ↑ NSS ↑ SIM ↑
- - - 0.8767 0.6338 0.6542 2.72 0.5228
- - X 0.7535 0.5951 0.4466 2.17 0.3578
- X - 0.6893 0.5679 0.3222 1.84 0.2539
- X X 0.8778 0.6442 0.6652 2.76 0.5350
X - - 0.8769 0.6272 0.6493 2.70 0.4798
X - X 0.8859 0.6505 0.6840 2.86 0.5381
X X - 0.8776 0.6367 0.6543 2.74 0.5216

Social cue ablation applied to our best GASP model

(DAM + LARGMU; Context Size = 10).
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Static & Sequential Models
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DAM + GMU: Directed Attention Module followed by the

Gated Multimodal Unit for static integration (middle);

DAM + LARGMU (Context Size = 10): Directed Attention

Module followed by the Late Attentive Recurrent GMU for

sequential integration (bottom).

Model AUC-J ↑ sAUC ↑ CC ↑ NSS ↑ SIM ↑
DAM + GMU 0.8845 0.6397 0.6620 2.77 0.5233

DAM + LARGMU 0.8830 0.6527 0.6980 2.87 0.5566

Conclusion
We show that gaze direction and facial
expression representations have a positive
effect when integrated with saliency models,
improving their prediction performances on
multiple metrics: supports the importance of
considering affect-biased attention.
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