
Reinforcement Learning
an introduction

Nick Knowles
knowlen@wwu.edu



Why Reinforcement Learning?

An effective way to approach artificial intelligence 
(learning/adaptation)

A framework for applying deep learning to problems of general 
intelligence, planning, and control

Relatively cheaper to implement



Machine Learning Paradigms

❖ Supervised Learning
■ Show what to do through labeled examples. 
■ Stops learning after initial training. 
■ Try to learn the underlying relationship between X and Y.

❖ Unsupervised Learning
■ Find patterns. 
■ No metric of right/wrong. 
■ Try to figure out the distribution of X.

❖ Reinforcement Learning
■ Let an agent learn through interaction with the environment.
■ Reward signals instead of ground truth labels.  
■ Try to learn a good policy for how to act in various states.



Common Limitations

Need to have an environment or model for the agent to carry out actions in. 

Need access to a reward signal. Optimal Policy

True reward function

Models



Concept of a state

Could bin "similar" states,

Observarion State
[1, 0, 1, 0] =>   2
[0, 0, 0, 0] =>     0
[0, 1, 0, 1]   =>     2
[0, 1, 0, 0] =>   1
[1, 0, 0, 0] =>   1

eg; state = sum(Observation)

Or append a new state 
for every unique vector 
encountered,

Observation State
[1, 0, 1] =>   0
[0, 1, 0] =>     1
[0, 1, 1] =>     2
[1, 1, 1] =>   3
[1, 1, 0] =>   4

ect...



Concept of a state

Usually have to bin continuous features

Example Bins:

-1 < x < 1 == 0
    x > 1 == 1
    x < -1 ==  -1

Observation Binned Observation    State 
[0.2145, -1.8042, 9.0265, 0.8511] =>   [0, -1, 1, 0] =>    1



Learning through interaction



Notation
❖ S: Current state 

■ Obtained from the environment at timestep 0.
■ Obtained from S' after timestep 0

❖

❖ a: Action to be taken in S
■ Obtained from a decision function.

❖

r: Immediate reward
■ Obtained from environment after taking a in S 

❖ S': Next state
■ Obtained from the environment after taking a in S
■ S = S' on next the timestep



Learning through interaction

... st, at, rt, st+1, at+1, rt+1, st+2, at+2, rt+2, st+3 ...

● Note the state before taking action.
● Execute an action.
● Note any reward received.
● Note the state after taking action. 

Experience tuple:   <St,at,rt,St+1>

== < S, a, r, S' >



Use experience tuples  <S, a, r, S'> to iteratively learn:

  [S] -> [a that leads to good future states]

... a "Policy"
                        

The goal



Policy Function

a Policy function dictates which actions will be selected by the agent.

(S): [probability vector over actions]



Policy Function (example)

Agent observes stateb1 from the environment. 
It plugs the observation into ,

(stateb1) = [0, 0.8, 0.1, 0.1]

The policy function says;
take a1 in stateb1 80%of the time, 
take either a2 or a3 the other 20%, 
but never take a0 in this state.  

                       4  
 3

      2
1

    0
 
      

   b c
a



Value Function

 
Value functions return the long term value of being in some state.

V(S): cumulative reward if taking the 'best' action in this & all future states
.. can also be based on policy,
V (St): cumulative reward if we only take actions given by (St) to St+n

If we always take the most probable or highest value action, then 
V(S) is considered off policy. 

DQN and Q-learning are off policy. 



Value functions: take a state and return a (long term) value.
V(S): cumulative reward if take the 'best' action in this & all future states
.. can also be based on policy,
V (St): cumulative reward if we only take actions given by (St) to St+n

But how can we know these? 

  V(S) =  V(S) + learn_rate(r + ⍺V(S') - V(S))

where ⍺ is "discount" weight on V(St+1) 

This propagates recursively to either a terminal state or a cycle, 

V(S) = E[rS + ⍺rS' + ⍺2rS'' + …]

Value Functions



Scaling to infinite horizons: Having a discount factor ensures that values do not 
scale to infinity when the number of decisions is unbounded.

Value and Policy Functions



We don't need to store previous events if we can model the 
change in value when transitioning between any two states

V(St) becomes a function of V(St+n) by passing through the
state space multiple times over.

And S is invariant to S0:t-2 (markov property) 

Allows the abstraction,
 Expected future rewards can steer decisions made in the present

  

Temporal Difference 



Temporal Difference Learning

Sometimes ignore the future by taking random actions
(Exploration vs Exploitation)



Grid World Demo
/knowlen/RL_fun/simple_rl.py

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html


The Q function

Maps state action pairs to value. 
Q(S,a): the long term value of taking action a in state S

Q(S,a) += learn_rate * (r + discount * V(S') - Q(S,a))



S statet
S' statet+1
a action taken in S
r reward observed after taking a in S

while not stopped:
Q(S,a) += lr * (r + (d * V(S')) - Q(S,a))
S = S'
a = [argmax Q(S,a[0..n_act])] or random action

  action

S', r = environment.do(action)

Q learning algorithm

Loop



Traditionally implemented as a table. 

"optimize productivity"

Q Table a0: work a1: eat (30 min) a3: sleep (8 hr)

S0: hungry 0 0 0

S1: tired 0 0 0

S2: caffeinated 0 0 0

S3: other 0 0 0

Actions

 States

The Q function



Traditionally implemented as a table.

"optimize productivity"

Q Table a0: work a1: eat (30 min) a3: sleep (8 hr)

S0: hungry 0 0 0

S1: tired 0 0 0

S2: caffeinated 10 0 -10

S3: other 5 0 0

Actions

 States

The Q function



Traditionally implemented as a table.

"optimize productivity"

Q Table a0: work a1: eat (30 min) a3: sleep (8 hr)

S0: hungry 0 8 0

S1: tired -8 0 0

S2: caffeinated 20 0 -20

S3: other 10 -1 0

Actions

 States

The Q function



Traditionally implemented as a table 

"optimize productivity"

Q Table a0: work a1: eat (30 min) a3: sleep (8 hr)

S0: hungry -6 23 1

S1: tired -23 -1 6

S2: caffeinated 40 0 -40

S3: other 20 -1 -16

Actions

 States

The Q function



Traditionally implemented as a table. 

"optimize productivity"

Q Table a0: work a1: eat (30 min) a3: sleep (8 hr)

S0: hungry -15 68 30

S1: tired -50 -15 42

S2: caffeinated 80 0 -100

S3: other 40 -10 -20

Actions

 States

The Q function



Limitation of Q Learning 

Constrained to discrete state space

-Table blows up

Q a1 a2

S1

S2



Limitation of Q Learning 

Constrained to discrete state space

... solved by using neural nets



Q Learning: Questions?



Limitation of Q Learning 

Constrained to discrete state space

... solved by using neural nets



Neural Networks
hidden layers

Output P(y|x)

h1
h2
 
hn

...

Weights w11 w22  ...
w12
 
w1n ..... w1n

... .....



Neural Networks



Neural Networks



Neural Networks



Neural Networks



Neural Networks



Neural Networks

(raw input)        ~    (latent representation) =



Neural Networks

Can "bin" states better than us



Deep Reinforcement Learning

Q(S,ak)
S

ak

h0 h1 hn

Q(S,a0)

S h0 h1 hn
Q(S,a1)

Q(S,an)

...

...

...



DQN

Q(S,a0)

S h0 h1 hn
Q(S,a1)

Q(S,an)

...

...

● Experience Replay
● Target Network



DQN: Experience Replay 

Store the last K Experience Tuples,

....
S111, a111, r111, S'111
S112, a112, r112, S'112
S113, a113, r113, S'113
S114, a114, r114, S'114
S115, a115, r115, S'115
S116, a116, r116, S'116
S117, a117, r117, S'117
S118, a118, r118, S'118
S119, a119, r119, S'119
S120, a120, r120, S'120
Sn, an, rn, S'n



DQN algorithm



DQN: Target Network

Q(S,a0)

S h0 h1 hn
Q(S,a1)

Q(S,an)

...

...

Q(S,a0)

S h0 h1 hn
Q(S,a1)

Q(S,an)

...

...

Target Network
-Frozen Weights
-Steers agent

Online Network
-Training Weights
-Not executing actions

Copy weights 
over every N
timesteps



Questions?



Environments
Usually tied to specific tasks.

Episodic (has terminal state)
-The env can be "played through" repeatedly to completion.
-Each complete play through is called an episode.   
-Eg; Atari, college, picking up objects in the physical world.

Continual (no clear terminal state) 
-Never really ends.
-eg; financial markets, sandbox/exploration games, world wide web.


