Reinforcement Learning

an 1ntroduction

Nick Knowles
knowlen@wwu.edu

Why Reinforcement Learning?

An effective way to approach artificial intelligence
(learning/adaptation)

A framework for applying deep learning to problems of general
intelligence, planning, and control

Relatively cheaper to implement

Machine Learning Paradigms

Supervised Learning X
m Show what to do through labeled examples. | 99 %
m Stops learning after initial training. o oty
m Trytolearn the underlying relationship between X and Y. .

Unsupervised Learning
m Find patterns.
m No metric of right/wrong.
m Tryto figure out the distribution of X.

: g,d.’ Lﬁ-,

m' _ '

. . © RawData
Reinforcement Learning
m Let an agent learn through interaction with the environment.
m Reward signals instead of ground truth labels.

m T[rytolearn a good policy for how to act in various states.

Common Limitations

Need to have an environment or model for the agent to carry out actions in.

Need access to a reward signal. oprimat Policy Nodels

V==
vy =Yy
* - || *

}
!
!
!

— | - | — - | —

True reward function

Concept of a state

Could bin "similar" states,

Observarion State
[1,0,1,00 => 2
[0,0,0,00 => O
[0,1,0,1] => 2
[0,1,0,0] => 1
[1,0,0,0] => 1

eg; state = sum(Observation)

Or append a new state
for every unique vector

encountered,
Observation State
[1,0,1] == O
[0,1,0] => 1
[0,1,1] = 2
[1,1,1] = 3
[1,1,0] => 4

ect...

Concept of a state

Usually have to bin continuous features

Example Bins:

-1 <x<1 == 0

X > 1 == 1

X < -1 == -1
Observation Binned Observation State

[0.2145, -1.8042, 9.0265, 0.8511] => [0, -1,1, O] => 1

Learning through interaction

agent environment
from state s, take action a

get reward R, new state s’

Notation

S"

Current state

m Obtained from the environment at timestep 0.
m Obtained from S' after timestep 0

Action to be taken in S
m Obtained from a decision function.

Immediate reward
m Obtained from environment after taking ain S

Next state

m Obtained from the environment after takingain S
m S =S'on next the timestep

Learning through interaction

st’ at’ I"t’ St+1’ at+1’ I"t+1’ St+2’ at+2’ rt+2’ St+3
Note the state before taking action.
Execute an action. .
agent environment

Note any reward received.
Note the state after taking action.

from state s, take action a

S

Experience tuple: <S ,a ,r.S, >

get reward R, new state s’

The goal

Use experience tuples <S, a, r, S'> to iteratively learn:

[S] -> [a that leads to good future states]

... a "Policy"

Policy Function

a Policy function dictates which actions will be selected by the agent.

a(S): [probability vector over actions]

Policy Function (example)

Agent observes state, , from the environment.
It plugs the observation into ,
n(state) = [0, 0.8, 0.1, 0.1]

The policy function says;

take a, in state, 80%of the time,
take either a, or a, the other 20%,
but never take a, in this state.

Value Function

Value functions return the long term value of being in some state.
V(S): cumulative reward if taking the 'best' action in this & all future states
.. can also be based on policy,
V7(S,): cumulative reward if we only take actions given by #(S) to S,

If we always take the most probable or highest value action, then
V(S) is considered off policy.

DQN and Q-learning are off policy.

Value Functions

V(S): cumulative reward if take the 'best’ action in ithis & all future states

VT(S,): cumulative reward if we only take actions given by z(S) to S,

But how can we know these?
V(S) = V(S) + learn_rate(r + aV(S') - V(S))
where o is "discount” weight on V(S, ,)

This propagates recursively to either a terminal state or a cycle,

V(S) = Efrg + arg, + a°rg. + ...]

Value and Policy Functions

Scaling to infinite horizons: Having a discount factor ensures that values do not
scale to infinity when the number of decisions is unbounded.

o0

Z ’Vt""t

t=0
0<y <1

Temporal Difference

We don't need to store previous events if we can model the
change in value when transitioning between any two states

V(S,) becomes a function of V(S,) by passing through the

+Nn

state space multiple times over.

And S is invariant to S markov property)

0:t-2 (

Allows the abstraction,
Expected future rewards can steer decisions made in the present

Temporal Difference Learning

Sometimes ignore the future by taking random actions
(Exploration vs Exploitation)

O /knowlen/RL_fun/simple_rl.py
Grid World Demo

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

The Q function

Maps state action pairs to value.
Q(S,a): the long term value of taking action a in state S

Q(S,a) += learn_rate * (r+discount*V(S') - Q(S,a))

Q learning algorithm

S state,

S' state,,

a action taken in S

r reward observed after taking a in S

while not stopped:
Q(S,a) += r+ V(S')) -Q(S, a)
S=§
a= [argmax Q(S,a[0..n_act])] or random action

action

S'.r= environment.do(action)

The Q function

Traditionally implemented as a table.

"optimize productivity" Actions
Q Table a,: work a,: eat (30 min) a,: sleep (8 hr)
S,: hungry 0 0 0
States S,: tired 0 0 0
S,: caffeinated 0 0 0
S,: other 0 0 0

The Q function

States

Traditionally implemented as a table.

"optimize productivity" Actions
Q Table a,: work a,: eat (30 min) a,: sleep (8 hr)
S,: hungry 0 0 0
S,: tired 0 0 0
S,: caffeinated 10 0 -10
S,: other 5 0 0

The Q function

Traditionally implemented as a table.

"optimize productivity" Actions
Q Table a,: work a,: eat (30 min) a,: sleep (8 hr)
S,: hungry 0 8 0
States S,: tired -8 0 0
S,: caffeinated 20 0 -20
S,: other 10 -1 0

The Q function

Traditionally implemented as a table

"optimize productivity" Actions
Q Table a,: work a,: eat (30 min) a,: sleep (8 hr)
S,: hungry -6 23 1
States S,: tired -23 -1 6
S,: caffeinated 40 0 -40
S,: other 20 -1 -16

The Q function

Traditionally implemented as a table.

"optimize productivity" Actions
Q Table a,: work a,: eat (30 min) a,: sleep (8 hr)
S,: hungry -15 68 30
States S,: tired -50 -15 42
S,: caffeinated 80 0 -100
S,: other 40 -10 -20

Limitation of Q Learning

Constrained to discrete state space S,

-Table blows up

Limitation of Q Learning

Constrained to discrete state space

Convolution Convolution Fully connected Fully connected
== =2 -
;| & /=
I
‘ \
I/
HRHT
g e rj -
‘ [
i i
[,
[|

Q Learning: Questions?

Limitation of Q Learning

Constrained to discrete state space

Convolution Convolution Fully connected Fully connected
== =2 -
;| & /=
I
‘ \
I/
HRHT
g e rj -
‘ [
i i
[,
[|

Neural Networks

hidden layers
Lots of data

Output P(y|x)

Neural Networks

Lots of data

Data representations (feature hierarchy)

Diagonal
Line

'm

de
-\

Deep & Large Networks

Neural Networks

Neural Networks

Manifold of known classes ﬂ_

New testimage
from unknown

Neural Networks

Are there
7\ patches
of lines?

Wi @
Are there \k
2 eyes?
———5 Isita
dog? _-> yes/no
AN
Are there /
L) \ 2ears?

Is there a
nose?

/ { Are there
triangles?,

Neural Networks

R - flying + sailing =

m - bowl + box =
i

ﬁ e
(Kiros, Salakhutdinov, Zemel, TACL 2015)

man man woman
with glasses without glasses without glasses

woman with glasses

Neural Networks

done
1000 / 1000
= e

o

Original photo Reference photo _ Result
(raw input) ~ (latent representation)

Neural Networks

.
¥

Can "bin" states better than us l

i —) H K
¥ 3 1 : ;

»

— L | PO L (N
i : g DAL O]

Deep Reinforcement Learning

S
> ho h1 hn

Q(S,a,)

Q(S,a,)

Q(S,a,)

Q(S,a)

DQN

e Experience Replay
e Target Network

Q(S,a,)

Q(S,a,)

Q(S,a)

DQN: Experience Replay

Store the last K Experience Tuples,

111°
112’
113’
114’
115’
116’
117’
118’
119’ 7119’

1207 1207
n! an5 rn7

111°
112’
113’
114’
115’
116’
117’
118’

DO OLOLOLLOLOLOLOLOOO®D
VI I I I VR VI <V L R

1
r111’ S 111
r 1
112’ 112
r [
113’ 113
r 1
114’ 114
r 1
115’ 115
r 1
116’ 116
r [
117’ 117
r 1
118’ 118
r 1
119’ 119
r 1
S‘IIZO’ 120

n

wmh'}hl =

- SR WA
VERAM A VA AW

)
WY

8‘ M“f“ﬂg p‘ﬂ" ‘ﬁ’Nv /

ML Fd
L ¢

DQN algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1. M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort =1,7 do
With probability € select a random action a;
otherwise select a; = max, Q*(d(s;),a;8)
Execute action a; in emulator and observe reward r; and image x;4
Set 5,11 = 8, as, 7441 and preprocess ¢ 11 = O(S11)
Store transition (¢, ag, ¢, d¢y1) in D
Sample random minibatch of transitions (¢;, a;,r;, ®;4+1) from D
Set y; — { :j . . . for terminal ¢, |
i + ymax, Q(¢j41,a’;6) for non-terminal ¢; 4
Perform a gradient descent step on (y; — Q(o;, a;: ﬂ)}g according to equalinn
end for
end for

DQN: Target Network

/ Target Network Q(S,a,)
-Frozen Weights
Copy weights -Steers agent
over every N Q(S,a,)
timesteps S ho h1 hn 1

Q(S.a,)
AN

/Online Network Q(S,a,)
-Training Weights 0

-Not executing actions

Q(S,a,)

Questions?

Environments

Usually tied to specific tasks.

Episodic (has terminal state)
-The env can be "played through" repeatedly to completion.
-Each complete play through is called an episode.
-EQ; Atari, college, picking up objects in the physical world.

Continual (no clear terminal state)
-Never really ends.
-eg; financial markets, sandbox/exploration games, world wide web.

