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Abstract

For my final project, I set out to replicate the algorithm pre-
sented in “Image Deblurring Using Inertial Measurement
Sensors” by Joshi et al [3]. I was initially attracted to this
paper because it presents what feels like a very intuitive
solution to the image deblurring problem: if we know the
motion of the camera, we should be able to use that infor-
mation to inform our deblurring optimization. I also saw
this as a good opportunity to get a taste of IMUs, as this
was my first time using this sensor modality. In this report,
I show several intermediate and final results detailing my
attempts to solve the camera shake correction problem. [
will explain the work I did, some results I obtained, and the
challenges I faced.

1. Introduction

Blurry images are a nuisance for anyone who has ever
picked up a camera. Take as an example a photographer
on vacation. She takes the perfect image of one of the
hoodoos in Bryce Canyon National Park, but only when she
gets back from her trip and closely examines her photos,
she realizes that her image is blurry, and the definition on
the jagged edges of the hoodoo is gone. She must have
been weary from the hike when capturing her photo, and
been shaking slightly while capturing the image. Now, her
beautiful vacation photos are ruined, no longer Instagram-
worthy.

The field of image deconvolution is an active research
area that aims to solve problems of this nature. Essentially,
deconvolution takes what we know about image filtering
and blurring, and aims to reverse the process. To start, we
will briefly discuss convolution, then the formulation of its
inverse. The problem can be defined as follows: given a
sharp image I, we can blur it with some blur kernel K to get
a new blurry image, B. The blurring operation is performed
using convolution, but we will see later that this can also be
represented by a pure linear operation.

B=KxI+N M

where N is zero-mean noise that is independent of the im-
age signal.

In practice, the kernel K is often a Gaussian filter or
something similar that assigns to each pixel the local av-
erage of its neighboring pixels. Especially in the case of the
Gaussian filter, this is usually used to de-noise the image, as
taking the averages of pixel values will work to lessen the
effect of noise in the image.

When we are just given a blurry image, without its asso-
ciated sharp image, we can simply try to reverse this process
to recover the initial sharp image:

I=K !B )

Although seemingly trivial at a high level, this problem
is not an easy one to solve in practice. Simply taking the in-
verse of a kernel and applying it to a blurry image will tend
to produce very poor results. Most blur kernels tend to have
many zero or close-to-zero values. So, inverting this will
lead to divisions by zero, which will greatly amplify high-
frequency noise in the signal, leaving us with an image that
is unrecognizable from the expected result.

To remedy this, deconvolution algorithms introduce an-
other term in the formulation of the sharp image, convert-
ing the problem from closed-form to an optimization. The
minimization we want to enforce is that the difference be-
tween the sharp image convolved with the blur kernel and
the blurry image is close to zero, while also ensuring that
the gradients in the resulting sharp image are small. This
small gradient assumption derives from the fact that natural
images tend to be mostly smooth, so we want our solution
to mimic that constraint. This formulation can be written as
follows:

min [B — K+ T|* + | vI|" 3)

where n defines which L-norm we want to minimize the
gradients over.

The above equation actually only solves part of the prob-
lem. It assumes that we already know the blur kernel to
deconvolve with. However, in the case of camera shake re-
moval, we do not know this blur kernel. So, at a high level,



this now becomes a joint optimization over two variables, I
as well as the unknown blur kernel B.

2. Theory from the Paper
2.1. Blur Function Formulation

The first thing to note here is that in the introduction, all
of the ideas and equations presented dealt with the concept
of spatially-invariant blur (ie, one blur kernel applied to the
entire image). However, due to the fact that the depth and
rotation of the captured image changes with camera mo-
tion, this paper’s novel contribution is deriving a spatially-
varying blur function.

To formulate the blur function, the authors present the
following idea. Suppose we are capturing an image over
some timespan t=[0,T], and the camera is moving during
that time. At any time t, we know that the expression for a
3D scene point projected to a 2D pixel point is:

[u,v,1]" =P[X,Y, Z,1]" )

where u, v define 2D pixel coordinates, X, Y, Z define 3D
world coordinates, and P is the 3x4 camera projection ma-
trix that relates these two quantities. P can be further de-
composed into the camera intrinsics K and the extrinsics
E;. The extrinsic matrix consists of 6 degrees of freedom (3
rotation, 3 translation) describing the camera’s position rel-
ative to some canonical frame. If we consider the camera’s
position at t=0 to be the canonical frame, we can clearly in-
fer that the extrinsic matrix will be a function of time, as
the camera’s position with respect to that first frame will
change during camera shake.

This change in camera extrinsic parameters at each
timestep manifests itself as different sets of projected pixels
onto the image plane. So, at each time t, we will have a
slightly different distribution of scene points on our image
plane depending on where in the world the camera was at
that point. Effectively, we’re trying to use the image points
to reason about the camera motion. Luckily, we are essen-
tially just relating T (number of timesteps) planes to each
other, which is easily doable using homographies. We can
parametrize a homography at a certain time t as a function
of scene depth as follows:

Hi(d) = K(R, + STNT)K 5)

where d is scene depth, R, and T} are the rotation and trans-
lation from the canonical frame, respectively, and NN is the
normal vector orthogonal to the image plane. Using this ho-
mography, we can get the pixel coordinates u,v at time ¢ as
follows:

[ug, vi, )T = Hy(d)[ug, vo, 1]7 (6)

Using this homography, we can then obtain the pixel values
at those points u,v; using the equation

It(utavt) = I(Ht(d)[u()av()a 1]T) (7)
which can be reformulated as
I, = Ay(d) Iy 3

In the above formulation, I; and I, are vectorized ver-
sions of the images at time t and time 0, respectively. The
matrix A;(d) encodes the transformation due to homogra-
phy as a NxN matrix, where N is the number of pixels in
an image (height x width). A; is a sparse matrix with four
nonzero entries per row, with the four nonzero elements be-
ing the bilinear interpolation weights associated with the
neighboring pixels. For example, if a warped pixel coor-
dinate for some arbitrary (ug,vg), defined by Equation (6),
comes out to be (13.6,17.9), then the four nonzero entries in
the (ug,vp) row of the matrix would be in the columns for
(13,17), (13,18), (14,17), and (14,18).

Once we have this formulation for the blur matrix at time
t, we can simply take the sum of all of these blur matrices
over the exposure time to formulate the final blur function,
and subsequently, the final blurry image.

A(d) = / Ay(d)dt )
B=A(d)Iy+ N (10)

So we now have the ability to define a blur matrix A
given the known spatial transformations between successive
sensor samples during the capture process. Now that we
know the blur function, this becomes a non-blind decon-
volution problem. We aim to optimize over the following
function:

min | B — A(d)I|* + A [|V1]*® (1)

The authors used the iteratively reweighted least squares
algorithm to solve this equation, but as I will discuss, I tried
a few different methods.

2.2. Extracting Transformations from Sensor Data

The authors describe in detail the process for extracting
linear and angular positions from an accelerometer and a
gyroscope mounted on a camera. I will sum up their equa-
tions and explanation in a few steps. This whole process
can be found on page 3 of the paper.

1. Given gyroscope readings (rad/s), integrate once to
get angular positions

2. Use these angular positions to create a list of rotation
matrices, transforming sensor readings at each time t
back to the frame at time 0



3. Rotate each of the accelerometer readings (m/s?)
back into the canonical frame (frame at t=0) using the
corresponding rotation matrix from Step 2

4. Integrate these rotated values twice to get linear posi-
tions

Armed with these two sections, we have enough informa-
tion to solve for the resulting sharp image using sensor data.
The last piece of the paper’s methodology describes an outer
loop to optimize for drift in the raw sensor readings, but due
to my issues in obtaining accurate linear positions from the
raw sensors (which I will discuss later), I decided to omit
that part from my implementation, instead opting for using
the ground-truth camera motion provided by the dataset.

3. Implementation

To implement this paper, I used the ETH3D dataset [ 1],
an open source dataset meant for SLAM benchmark testing.
I chose this dataset because it has well-organized IMU data
along with RGB images. They even have a few datasets of
the camera shaking, but I came to realize that their defini-
tion of ’shaking” was too much for this algorithm to handle,
as I will discuss later on. I tested my algorithm using im-
ages and IMU data from the “camera shake 1 and “’plant
5” datasets. In both datasets, there is about 1 image per
0.03 seconds, one IMU sample per 0.005 seconds (6-7 per
image), and one ground-truth position sample every 0.01
seconds (3-4 per image).

3.1. Sensor Data Processing

To start, I created a data loading script that wrapped up
each image with its associated sensor data based on the
timestamps of the sensor readings and the images. Using
this data, for each image I carried out the algorithm laid
out in the previous section to recover angular and linear po-
sitions. I was able to do a good job of recovering angu-
lar positions fairly accurately; however after following the
procedure for using these angular positions to recover lin-
ear positions, I must have some bug or misunderstanding
in my implementation. I have a sneaking suspicion that I
have some reference frame discrepancy in my code, but af-
ter debugging for a few days, I was unable to find the bug.
Qualitatively, it looks to be a scale issue, as the shapes of the
curves look similar enough, but the scales look off, although
not by the same factor along each axis (5x discrepancy in
X position but 10x discrepancy in z position). However, 1
know it could possibly be a reference frame transform issue
as well, as I spent a lot of time debugging that type of error
in order to get the angular positions to line up.

Because of this incompleteness in the sensor processing,
I was unable to justify the use of the outer-loop optimiza-
tion discussed in Section 3.4 of the paper, which is meant
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Figure 1. Angular positions derived from gyroscope readings com-
pared to ground truth angular positions
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Figure 2. Linear positions derived from accelerometer readings
compared to ground truth linear positions

to counteract sensor drift. Instead, from here on I use the
ground truth position measurements provided by the dataset
to infer camera motion, so it is safe to assume that these
measurements do not require drift correction.

In Figures 1 and 2, I show the calculated relative rota-
tions and translations from the canonical frame. For easier
visibility for the sake of this report, I show the data for the
entire length of the dataset. In practice, I take the sensor
data associated with the given frame and rotate every sam-
ple into the frame of the first sample for the given frame, as
specified in the paper.



3.2. Blur Function Formulation

Using the ground truth motion provided in the dataset, I
follow a similar procedure as was outlined in Section 2.2.
After loading all the ground truth data for each image’s ex-
posure time window, I loop through each data sample and
performed the following steps.

1. Sample the relative angular position, and convert that
into a homography using Equation 5. Here, I assume
N to be [0,0,1] (i.e., pointing out of the camera’s prin-
cipal point, perpendicular to the image plane), and I
assume a constant depth of 1. The outer loop optimiza-
tion in the paper implicitly solves for this depth value,
but I found that picking a constant worked fairly well
on the data I used.

2. Using this homography, warp every coordinate in the
image to the new plane coordinates defined by the ho-
mography. Using these new coordinates, populate the
sparse A matrix with the four weights used for bilinear
interpolation of neighboring pixel values.

3. Loop through Steps 1 and 2 for each sensor reading,
adding in the newest bilinear interpolation weights to
the existing A matrix.

4. Divide every element in A by the number of total sam-
ples, so that the sum of each row is 1.

At this point, I slightly deviated from the method described
in the paper given the limitations in optimization code I had
accessible to me. My math skills are admittedly limited in
this area, and while I understood the optimization at a high
level, I did not have the time to implement it myself, so I
had to depend on third party code to perform the optimiza-
tion. In what I was able to find, most deblurring optimiza-
tion code takes as input a single spatially-invariant blur ker-
nel instead of the A matrix that the paper describes.

On Yannis’s suggestion, I went looking for an imple-
mentation of the Alternating Direction Method of Multi-
pliers algorithm, which solves the deconvolution problem
while enforcing an L-1 norm minimization on the resulting
sharp image. While not exactly the same as the paper, I fig-
ured this would be a good approximation of the solution.
To implement this algorithm, I used the existing ‘“Plug-and-
Play-ADMM” MATLAB codebase provided by [2], and re-
implemented it in Python. Their algorithm takes in a blurry
image and spatially-invariant blur kernel, and solves for the
resulting sharp image. To obtain a blur kernel, I arbitrar-
ily pick some index in the image and, using a square kernel
with size 35x35, I create the kernel using the corresponding
values in the A matrix.

Figure 3. (Example 1) Original image. The blue box shows the
35x35 region of the image for which I take the blur kernel to feed
into the ADMM optimizer

4. Results
4.1. Plant Dataset

Here I discuss some results of the deblurring procedure
on the plant image set from the dataset. This dataset shows
a camera being slowly walked around a plant. The small
inter-frame motion is key here, as the formulation of blur
laid out in the paper only holds for small motions.

4.1.1 Example 1

Figure 3 shows the original blurry image, along with the
box indicating which region the blur kernel (Figure 5) is
formulated around. In this case, I build the kernel around
the pixel x=50, y=50. Between this frame and the previ-
ous frame, there is only a small translation, and not much
rotation, so it follows that the blur kernels across the im-
age (Figure 4) are mostly similar. The output (Figure 6)
shows a very successful deblurring result, since the origi-
nal kernel location, as well as other parts in the image, look
distinctly sharper. The oblique stem that runs downward
along the middle of the image is an especially good indica-
tor of the deblurring result, as it appears much clearer and
its edges are sharper. As a quantitative measure, the peak
signal to noise ratio (PSNR) between the deblurred result
and the original is 27.32 dB, which is a very strong result.

4.1.2 Example 2

For the second example, I chose a frame in the dataset with
a little bit more motion between frames. Figure 7 shows
the original frame, as well as the box highlighting the pixel
(115,110) that I used to build the blur kernel (shown in Fig-
ure 9). This clearly is a larger motion, as the effects from
more pixels farther from the original are incorporated into
the pixel’s final value. We can also see in Figure 8 that the



Figure 4. (Example 1) Spatially-varying blur kernels generated by
scene motion in Figure 3

Figure 5. (Example 1) Kernel used for ADMM deblurring opti-
mization, built around pixel coordinate (50,50)

blur varies much more over the scene. Given this blur ker-
nel at (115,110), I was able to obtain the results shown in
Figure 10. Here, the edges are definitely sharper (especially
on the edges of leaves near the kernel location, and the lit-
tle yellow hairs coming from the stem), but there are some
strange color artifacts that do not look very good. Still, this
did denoise the image reasonably, as there was still a PSNR
of 20.86 dB.

To try and see if I could improve the results on this im-
age, I built a blur kernel around the pixel (180,130), on the
central yellow stem, shown in Figure 11. The kernel gener-
ated at this location is shown in Figure 12. In this new blur
kernel, there is a much less even distribution of neighboring
pixel values, as shown by the one noticeably brighter pixel
in the kernel. As we can see in Figure 13, this kernel does
a much better job of approximating the scene blur, as the
stem is much clearer and there are fewer strong color arti-
facts. Additionally, the qualitative observations are backed
up by the quantitative observation that the PSNR here has
increased to 21.32 dB.

The results shown on this image show that the deblurring
optimization is definitely spatially-varying, so my method is
not a reliable way to deblur images, since I have to manu-
ally try different kernel locations to approximate which one

Figure 6. (Example 1) Initial blurry image (top) compared with
final deblurred output (bottom). PSNR = 27.32 dB

seems to work the best over the whole image. This simply
proves the authors’ point: blur in a moving scene is abso-
lutely dependent on the location in the image.

4.2. Camera Shake Dataset

The results shown on the plant dataset, though presented
first, were the last things that I tested. For the majority
of my development process, I was using the camera shake
dataset. However, the dataset curators’ definition of camera
shake and the computational photography literature’s defi-
nition differ greatly, and I feel silly for not realizing this ear-
lier. The camera shake dataset is more meant to stress-test
localization systems than image deblurring, so the camera
is shaken wildly during capture. Because of such large mo-
tions, it leads to the generated blur kernels being sparse and
non-continuous, producing poor results. Here I’ll show one
example of my output on an image from the camera shake
dataset.

4.2.1 Example 3

The original image is shown in Figure 14, with the area
around pixel (50,40) shown in the box. The spatially vary-
ing kernels are shown in Figure 15, and the kernel built
around (50,40) is shown in Figure 16. The final output is
shown in Figure 17. Clearly we can see that these results
are poor, but intuitively it makes a lot of sense. The camera



Figure 7. (Example 2.1) Original image. The blue box shows the
region of the image for which I take the blur kernel to feed into the
ADMM optimizer

Figure 8. (Example 2.1) Spatially-varying blur kernels generated
by scene motion in Figure 7

Figure 9. (Example 2.1) Kernel used for ADMM deblurring opti-
mization, built around pixel coordinate (115,110)

is moving too fast for the sensors to keep up, so we are left
with discontinuous blur kernels. This causes a lot of strong
artifacts in the resulting image, including a large black rect-
angle inside the bottom left border, which is a product of
the blank space between nonzero blur kernel entries. Inter-
estingly there is still some positive denoising outcome, as
the resulting image has a PSNR of 13.42 dB, but I wouldn’t

Figure 10. (Example 2.1) Initial blurry image (top) compared with
final deblurred output (bottom). PSNR = 20.87 dB

Figure 11. (Example 2.2) Original image. The blue box shows the
region of the image for which I take the blur kernel to feed into the
ADMM optimizer

really consider that a valid metric, since so many pixels in
the resulting image are fully black where there was color in
the original.

5. Discussion

5.1. Other Optimization Constraints Attempted

While experimenting with the results of the “Plug-and-
Play ADMM?” in the early stages of development, I was not
satisfied with the results, so I tried to pursue methods that
actually used the 0.8-norm optimization that the paper uses.



Figure 12. (Example 2.2) Kernel used for ADMM deblurring op-
timization, built around pixel coordinate (180,130)

Figure 13. (Example 2.2) Initial blurry image (top) compared with
final deblurred output (bottom). PSNR =21.32 dB

I found a good explanation of the correct sparse-gradient de-
convolution algorithm in [4] that seemed, on paper, to han-
dle the spatially-invariant blur matrix instead of a single blur
kernel, but upon looking at their implementation, it seemed
like they also required a single kernel as input to the deblur-
ring optimization. However, the kernel that they use in their
demo was a coded aperture, which by its nature would be
spatially-invariant, as that coding would be applied to every
pixel in the blurry image. I did try their MATLAB imple-
mentation using one of my images and got really horrible
results (white images with some black streaks, but nothing
like an image), so I decided to stick with my L-1 ADMM
implementation.

Figure 14. (Example 3) Original image. The blue box shows the
region of the image for which I take the blur kernel to feed into the
ADMM optimizer

Figure 15. (Example 3) Spatially-varying blur kernels generated
by scene motion in Figure 14

Figure 16. (Example 3) Kernel used for ADMM deblurring opti-
mization, built around pixel coordinate (50,40)

I also tried translating the L2-norm implementation from
the “Plug-and-Play ADMM” MATLAB codebase, but expe-
rienced some bugs.

5.1.1 Future Work

To better match the results in the original paper, I would
have to figure out a good way to incorporate the entire



Figure 17. (Example 3) Initial blurry image (top) compared with
final deblurred output (bottom). PSNR = 13.42 dB

spatially-varying blur matrix into the deblurring optimiza-
tion, not just one arbitrarily located blur kernel. To do this,
I would have to spend more time studying the math and
implementation of this algorithm without using the Fourier
domain, as I am unsure about the feasibility of taking the
Fourier transform of a the large, sparse blur matrix.

Additionally, to fully match the results of the paper, I
would have to fix whatever bug I am experiencing in the
accelerometer processing, so that the data more closely
matches the ground truth. This would then allow for the
outer loop optimization to minimize sensor drift, thus fully
replicating the method described in the paper.

6. Conclusion

In this report, I have presented my efforts and discover-
ies in exploring the paper “Image Deblurring Using Inertial
Measurement Sensors.” I have implemented the majority of
the techniques described in the paper, and have learned a
great deal along the way.

I have uploaded my code for this project to

https://github.com/kob51/image_deblurring

if you’d like to take a look!
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