
Zowe Documentation

Table of contents:
Introduction

Fast Track ⏱
Disclaimer
Features
Design principles
Comparison with other tools

Gatsby
Next.js
VuePress
MkDocs
Docsify
GitBook
Jekyll

Staying informed
Something missing?

Installation
Requirements
Scaffold project website
Project structure

Project structure rundown
Running the development server
Build
Updating your Docusaurus version
Problems?

Configuration
What goes into a docusaurus.config.js?

Site metadata
Deployment configurations
Theme, plugin, and preset configurations
Custom configurations

Accessing configuration from components
Customizing Babel Configuration

TypeScript Support
Setup
Swizzling TypeScript theme components

Creating Pages
Add a React page
Add a Markdown page
R ti

Routing
Using React
Duplicate Routes

Docs Introduction
Document ID
Home page docs
Docs-only mode

Create a doc
Hello from Docusaurus

Headers
Only h2 and h3 will be in the toc

Sidebar

Default sidebar
Sidebar object
Using multiple sidebars
Understanding sidebar items

Doc: link to a doc
Ref: link to a doc, without sidebar
Link: link to any page
Category: create a hierarchy
Autogenerated: generate a sidebar

Hideable sidebar
Passing custom props
Complex sidebars example

Versioning
Directory structure

Tagging a new version
Docs

Creating new docs
Linking docs

Versions
Updating an existing version
Deleting an existing version

Recommended practices
Figure out the behavior for the "current" version
Version your documentation only when needed
Keep the number of versions small
Use absolute import within the docs
Global or versioned colocated assets

Docs Markdown Features
Markdown frontmatter
Referencing other documents

Docs Multi-instance
Use-cases

Mobile SDKs documentation
Versioned and unversioned doc

Setup
Versioned paths
Tagging new versions
Docs navbar items

Blog
Initial setup
Adding posts
Header options
Summary truncation

y
Feed
Advanced topics

Blog-only mode
Multiple blogs

Markdown Features introduction
Using React
Tabs

Syncing tab choices
Customizing tabs

Code blocks
Code title
Syntax highlighting
Line highlighting
Interactive code editor
It is 13:30:21.

Imports
Multi-language support code blocks

Admonitions
Specifying title

Headings
Markdown headings
Heading ids

Generated ids
Explicit ids

Inline TOC
Full table of contents
Custom table of contents
Example Section 1

Example Subsection 1 a
Example Subsection 1 b
Example Subsection 1 c

Example Section 2
Example Subsection 2 a
Example Subsection 2 b
Example Subsection 2 c

Example Section 3
Example Subsection 3 a
Example Subsection 3 b
Example Subsection 3 c

Assets
Images
Files
Inline SVGs
Themed Images

Plugins
Configuring plugins
Configuring plugin options

Styling and Layout
Traditional CSS
Styling your site with Infima

Dark Mode
Styling approaches

Global styles
CSS modules
CSS-in-JS

Sass/SCSS
Static Assets

Referencing your static asset
JSX example
Markdown example
Caveats

Search
Using Algolia DocSearch

Connecting Algolia
Contextual search
Custom Application ID
Styling your Algolia search
Customizing the Algolia search behavior
Editing the Algolia search component

Using your own search
Browser support

Purpose
Default values
Read more

Deployment
Testing Build Local
Self Hosting
Deploying to GitHub Pages

docusaurus.config.js settings
Environment settings
Deploy
Triggering deployment with GitHub Actions
Triggering deployment with Travis CI
Using Azure Pipelines
Using Drone

Deploying to Netlify
Deploying to Vercel
Deploying to Render
Deploying to Qovery
Deploying to Hostman
Deploying to Surge

Using your domain
Setting up CNAME file

Deploying to QuantCDN
i18n - Introduction

Goals
i18n goals
i18n non-goals

Translation workflow
Overview
Translation files
Translation files location

i18n - Tutorial
Configure your site

Site configuration
Theme configuration
Start your site

Translate your site
Use the translation APIs
Translate JSON files

Translate Markdown files
Use explicit heading ids

Deploy your site
Single-domain deployment
Multi-domain deployment
Hybrid

i18n - Using git
Tradeoffs
Git tutorial

Prepare the Docusaurus site
Initialize the i18n folder
Translate the files
Repeat

Maintain the translations
Markdown translations
JSON translations
Localize edit urls

i18n - Using Crowdin
Crowdin overview
Crowdin tutorial

Prepare the Docusaurus site
Create a Crowdin project
Create the Crowdin configuration
Install the Crowdin CLI
Upload the sources
Translate the sources
Download the translations
Automate with CI

Advanced Crowdin topics
MDX
Docs versioning
Multi-instance plugins
Maintaining your site
VCS (Git) integrations
In-Context localization
Localize edit urls
Example configuration

Plugins
Available plugins
Installing a plugin
Configuring plugins
Multi-instance plugins and plugin ids
Plugins design
Creating plugins

Module definition
Themes

Available themes
Using themes
Theme components
Wrapping your site with <Root>
Swizzling theme components
Wrapping theme components

For site owners
For plugin authors

Themes design

g
Writing customized Docusaurus themes

Presets
Using presets
Presets -> themes and plugins
Official presets

@docusaurus/preset-classic
@docusaurus/preset-bootstrap

Migration overview
Main differences
Docusaurus 1 structure
Docusaurus 2 structure
Migration process
Automated migration process
Manual migration process
Support
Example migration PRs

Automated migration
Manual migration

Project setup
package.json
Update references to the build directory
.gitignore
README

Site configurations
docusaurus.config.js
Updated fields
Removed fields

Urls
Components

Sidebar
Footer
Pages

Content
Replace AUTOGENERATED_TABLE_OF_CONTENTS
Update Markdown syntax to be MDX-compatible
Language-specific code tabs
Front matter

Deployment
Test your site

Versioned sites
Migrate your versioned_docs front matter
Migrate your versioned_sidebars
Populate your versioned_sidebars and versioned_docs
Convert style attributes to style objects in MDX

Translated sites
i18n differences

Different filesystem paths
Updated translation APIs
Stricter Markdown parser

Migration strategies
Create a new Crowdin project
Use the existing Crowdin project
Use Git instead of Crowdin

Version: 2.0.0-beta.0

Introduction

⚡ Docusaurus will help you ship a beautiful documentation site in no time.

💸 Building a custom tech stack is expensive. Instead, focus on your content and just write Markdown files.

💥 Ready for more? Use advanced features like versioning, i18n, search and theme customizations.

💅 Check the best Docusaurus sites for inspiration and read some testimonials.

🧐 Docusaurus is a static-site generator. It builds a single-page application with a fast client-side navigation,
leveraging the full power of React to make your site interactive. It provides out-of-the-box documentation features,
but can be used to create any kind of site (personal website, product, blog, marketing landing pages, etc).

Fast Track ⏱ #

Understand Docusaurus in 5 minutes by playing!

Create a new Docusaurus site and follow the very short embedded tutorial.

Install Node.js and create a new Docusaurus site:

Copy

Start the site:

Copy

Open http://localhost:3000 and follow the tutorial.

tip

Use new.docusaurus.io to test Docusaurus immediately in your browser!

Or read the 5 minutes tutorial online.

Disclaimer#

Docusaurus v2 is beta but already quite stable and widely used.

We highly encourage you to use Docusaurus v2 over Docusaurus v1, as Docusaurus v1 will be deprecated soon.

A lot of users are already using Docusaurus v2 (trends).

Use Docusaurus v2 if:

✅ You want a modern Jamstack documentation site
✅ You want a single-page application (SPA) with client-side routing
✅ You want the full power of React and MDX
✅ You do not need support for IE11

https://zowe-docs.netlify.app/showcase?tags=favorite
https://twitter.com/sebastienlorber/timelines/1392048416872706049
https://nodejs.org/en/download/
https://new.docusaurus.io/
https://docusaurus.sse.codesandbox.io/
https://zowe-docs.netlify.app/showcase
https://www.npmtrends.com/docusaurus-vs-@docusaurus/core

✅ pp

Use Docusaurus v1 if:

❌ You don't want a single-page application (SPA)
❌ You need support for IE11

Features#

Docusaurus is built with high attention to the developer and contributor experience.

⚛ Built with 💚 and React
Extend and customize with React
Gain full control of your site's browsing experience by providing your own React components

Pluggable
Bootstrap your site with a basic template, then use advanced features and plugins
Open source your plugins to share with the community

✂ Developer experience
Start writing your docs right now
Universal configuration entry point to make it more maintainable by contributors
Hot reloading with lightning fast incremental build on changes
Route-based code and data splitting
Publish to GitHub Pages, Netlify, Vercel and other deployment services with ease

Our shared goal — to help your users find what they need fast, and understand your products better. We share with
you our best practices helping you build your doc site right and well.

🎯 SEO friendly
HTML files are statically generated for every possible path
page-specific SEO to help your users land on your official docs directly relating their problems at hand

📝 Powered by MDX
Write interactive components via JSX and React embedded in markdown
Share your code in live editors to get your users love your products on the spot

🔍 Search - Your full site is searchable
💾 Document Versioning - Helps you keep documentation in sync with project releases.
🌍 i18n - Translate your site in multiple locales

Docusaurus 2 is born to be compassionately accessible to all your users, and lightning fast.

⚡ Lightning fast - Docusaurus 2 follows the PRPL Pattern that makes sure your content loads blazing fast
🦖 Accessible - Attention to accessibility, making your site equally accessible to all users

Design principles#

Little to learn - Docusaurus should be easy to learn and use as the API is quite small. Most things will still be
achievable by users, even if it takes them more code and more time to write. Not having abstractions is better
than having the wrong abstractions, and we don't want users to have to hack around the wrong abstractions.
Mandatory talk - Minimal API Surface Area.
Intuitive - Users will not feel overwhelmed when looking at the project directory of a Docusaurus project or
adding new features. It should look intuitive and easy to build on top of, using approaches they are familiar
with.

Layered architecture - The separations of concerns between each layer of our stack (content/theming/styling)

https://v1.docusaurus.io/
https://developers.google.com/web/fundamentals/performance/prpl-pattern/
https://www.youtube.com/watch?v=4anAwXYqLG8

should be clear - well-abstracted and modular.
Sensible defaults - Common and popular performance optimizations and configurations will be done for users
but they are given the option to override them.
No vendor-lock in - Users are not required to use the default plugins or CSS, although they are highly
encouraged to. Certain core lower-level infra level pieces like React Loadable, React Router cannot be
swapped because we do default performance optimization on them. But not higher level ones, such as choice
of Markdown engines, CSS frameworks, CSS methodology will be entirely up to users.

We believe that as developers, knowing how a library works is helpful in allowing us to become better at using it.
Hence we're dedicating effort into explaining the architecture and various components of Docusaurus with the hope
that users reading it will gain a deeper understanding of the tool and be even more proficient in using it.

Comparison with other tools#

Across all static site generators, Docusaurus has a unique focus on documentation sites and has many out-of-the-box
features.

We've also studied other main static site generators and would like to share our insights on the comparison, hopefully
to help you navigate through the prismatic choices out there.

Gatsby#

Gatsby is packed with a lot of features, has a rich ecosystem of plugins and is capable of doing everything that
Docusaurus does. Naturally, that comes at a cost of a higher learning curve. Gatsby does many things well and is
suitable for building many types of websites. On the other hand, Docusaurus tries to do one thing super well - be the
best tool for writing and publishing content.

GraphQL is also pretty core to Gatsby, although you don't necessarily need GraphQL to build a Gatsby site. In most
cases when building static websites, you won't need the flexibility that GraphQL provides.

Many aspects of Docusaurus 2 were inspired by the best things about Gatsby and it's a great alternative.

Dokz is a Gatsby theme to build documentation website. It is currently less featured than Docusaurus.

Next.js#

Next.js is another very popular hybrid React framework. It can help you build a good documentation website, but it
is not opinionated toward the documentation use-case, and it will require a lot more work to implement what
Docusaurus provides out-of-the-box.

Nextra is an opinionated static-site-generator built on top of Next.js. It is currently less featured than Docusaurus.

VuePress#

VuePress has many similarities with Docusaurus - both focus heavily on content-centric website and provides
tailored documentation features out of the box. However, VuePress is powered by Vue, while Docusaurus is powered
by React. If you want a Vue-based solution, VuePress would be a decent choice.

MkDocs#

MkDocs is a popular Python static-site-generator with value proposition similar to Docusaurus.

It is a good option if you don't need a single-page application, and don't plan to leverage React.

https://www.gatsbyjs.com/
https://github.com/pedronauck/docz
https://nextjs.org/
https://github.com/shuding/nextra
https://vuepress.vuejs.org/
https://www.mkdocs.org/

Material for MkDocs is a beautiful theme.

Docsify#

Docsify makes it easy to create a documentation website, but is not a static-site generator and is not SEO friendly.

GitBook#

GitBook has very clean design and has been used by many open source projects. With its focus shifting towards a
commercial product rather than an open-source tool, many of its requirements no longer fit the needs as an open
source project's documentation site. As a result, many have turned to other products. You may read about Redux's
switch to Docusaurus here.

Currently, GitBook is only free for open-source and non-profit teams. Docusaurus is free for everyone.

Jekyll#

Jekyll is one of the most mature static site generators around and has been a great tool to use — in fact, before
Docusaurus, most of Facebook's Open Source websites are/were built on Jekyll! It is extremely simple to get started.
We want to bring a similar developer experience as building a static site with Jekyll.

In comparison with statically generated HTML and interactivity added using <script /> tags, Docusaurus sites are
React apps. Using modern JavaScript ecosystem tooling, we hope to set new standards on doc sites performance,
asset build pipeline and optimizations, and ease to setup.

Staying informed#

GitHub
Twitter
Blog
Discord

Something missing?#

If you find issues with the documentation or have suggestions on how to improve the documentation or the project in
general, please file an issue for us, or send a tweet mentioning the @docusaurus Twitter account.

For new feature requests, you can create a post on our Canny board, which is a handy tool for roadmapping and
allows for sorting by upvotes, which gives the core team a better indicator of what features are in high demand, as
compared to GitHub issues which are harder to triage. Refrain from making a Pull Request for new features
(especially large ones) as someone might already be working on it or will be part of our roadmap. Talk to us first!

Version: 2.0.0-beta.0

Installation

Docusaurus is essentially a set of npm packages.

tip

Use the Fast Track to understand Docusaurus in 5 minutes ⏱!

https://squidfunk.github.io/mkdocs-material/
https://docsify.js.org/
https://www.gitbook.com/
https://github.com/reduxjs/redux/issues/3161
https://github.com/jekyll/jekyll
https://github.com/facebook/docusaurus
https://twitter.com/docusaurus
https://zowe-docs.netlify.app/blog
https://discord.gg/Je6Ash6
https://github.com/facebook/docusaurus
https://twitter.com/docusaurus
https://zowe-docs.netlify.app/feedback
https://github.com/facebook/docusaurus/tree/master/packages
https://zowe-docs.netlify.app/docs/#fast-track

⏱

Use new.docusaurus.io to test Docusaurus immediately in your browser!

Requirements#

Node.js version >= 12.13.0 or above (which can be checked by running node -v). You can use nvm for
managing multiple Node versions on a single machine installed
Yarn version >= 1.5 (which can be checked by running yarn --version). Yarn is a performant package
manager for JavaScript and replaces the npm client. It is not strictly necessary but highly encouraged.

Scaffold project website#

The easiest way to install Docusaurus is to use the command line tool that helps you scaffold a skeleton Docusaurus
website. You can run this command anywhere in a new empty repository or within an existing repository, it will
create a new directory containing the scaffolded files.

Copy

Example:

Copy

If you do not specify name or template, it will prompt you for them. We recommend the classic template so that
you can get started quickly and it contains features found in Docusaurus 1. The classic template contains
@docusaurus/preset-classic which includes standard documentation, a blog, custom pages, and a CSS framework
(with dark mode support). You can get up and running extremely quickly with the classic template and customize
things later on when you have gained more familiarity with Docusaurus.

[FB-Only]: If you are setting up a new Docusaurus website for a Facebook open source project, use the facebook
template instead, which comes with some useful Facebook-specific defaults:

Copy

[Experimental]: If you want setting up a new website using bootstrap, use the bootstrap template, like the
following:

Copy

If you want to skip installing dependencies, use the --skip-install option, like the following:

Copy

Project structure#
Assuming you chose the classic template and named your site my-website, you will see the following files generated
under a new directory my-website/:

Copy

Project structure rundown#

/blog/ - Contains the blog Markdown files. You can delete the directory if you do not want/need a blog. More
details can be found in the blog guide
/docs/ - Contains the Markdown files for the docs. Customize the order of the docs sidebar in sidebars.js.

https://zowe-docs.netlify.app/docs/#fast-track
https://new.docusaurus.io/
https://nodejs.org/en/download/
https://github.com/nvm-sh/nvm
https://yarnpkg.com/en/
https://getbootstrap.com/
https://zowe-docs.netlify.app/docs/blog

More details can be found in the docs guide
/src/ - Non-documentation files like pages or custom React components. You don't have to strictly put your
non-documentation files in here but putting them under a centralized directory makes it easier to specify in
case you need to do some sort of linting/processing

/src/pages - Any files within this directory will be converted into a website page. More details can be
found in the pages guide

/static/ - Static directory. Any contents inside here will be copied into the root of the final build directory
/docusaurus.config.js - A config file containing the site configuration. This is the equivalent of
siteConfig.js in Docusaurus v1
/package.json - A Docusaurus website is a React app. You can install and use any npm packages you like in
them
/sidebar.js - Used by the documentation to specify the order of documents in the sidebar

Running the development server#

To preview your changes as you edit the files, you can run a local development server that will serve your website
and reflect the latest changes.

npm
Yarn

Copy

By default, a browser window will open at http://localhost:3000.

Congratulations! You have just created your first Docusaurus site! Browse around the site to see what's available.

Build#

Docusaurus is a modern static website generator so we need to build the website into a directory of static contents
and put it on a web server so that it can be viewed. To build the website:

npm
Yarn

Copy

and contents will be generated within the /build directory, which can be copied to any static file hosting service like
GitHub pages, Vercel or Netlify. Check out the docs on deployment for more details.

Updating your Docusaurus version#

There are many ways to update your Docusaurus version. One guaranteed way is to manually change the version
number in package.json to the desired version. Note that all @docusaurus/-namespaced packages should be using
the same version.

important

Please update to the latest Docusaurus 2 version shown at the top of the page, not what is shown below.

package.json
Copy

https://zowe-docs.netlify.app/docs/docs-markdown-features
https://zowe-docs.netlify.app/docs/creating-pages
https://pages.github.com/
https://vercel.com/
https://www.netlify.com/
https://zowe-docs.netlify.app/docs/deployment

py

Then, in the directory containing package.json, run your package manager's install command:

npm
Yarn

Copy

To check that the update occurred successfully, run:

npm
Yarn

Copy

You should see the correct version as output.

Alternatively, if you are using Yarn, you can do:

Copy

Problems?#

Ask for help on Stack Overflow, on our GitHub repository or Twitter.

Version: 2.0.0-beta.0

Configuration

Docusaurus has a unique take on configurations. We encourage you to congregate information of your site into one
place. We guard the fields of this file, and facilitate making this data object accessible across your site.

Keeping a well-maintained docusaurus.config.js helps you, your collaborators, and your open source contributors
be able to focus on documentation while still being able to customize the site.

What goes into a docusaurus.config.js?#

You should not have to write your docusaurus.config.js from scratch even if you are developing your site. All
templates come with a docusaurus.config.js that includes defaults for the common options.

However, it can be helpful if you have a high-level understanding of how the configurations are designed and
implemented.

The high-level overview of Docusaurus configuration can be categorized into:

Site metadata
Deployment configurations
Theme, plugin, and preset configurations
Custom configurations

For exact reference to each of the configurable fields, you may refer to docusaurus.config.js API reference.

Site metadata#

https://stackoverflow.com/questions/tagged/docusaurus
https://github.com/facebook/docusaurus
https://twitter.com/docusaurus
https://zowe-docs.netlify.app/docs/docusaurus.config.js

Site metadata contains the essential global metadata such as title, url, baseUrl and favicon.

They are used in a number of places such as your site's title and headings, browser tab icon, social sharing
(Facebook, Twitter) information or even to generate the correct path to serve your static files.

Deployment configurations#

Deployment configurations such as projectName and organizationName are used when you deploy your site with
the deploy command.

It is recommended to check the deployment docs for more information.

Theme, plugin, and preset configurations#

List the theme, plugins, and presets for your site in the themes, plugins, and presets fields, respectively. These are
typically npm packages:

docusaurus.config.js
Copy

They can also be loaded from local directories:

docusaurus.config.js
Copy

To specify options for a plugin or theme, replace the name of the plugin or theme in the config file with an array
containing the name and an options object:

docusaurus.config.js
Copy

To specify options for a plugin or theme that is bundled in a preset, pass the options through the presets field. In
this example, docs refers to @docusaurus/plugin-content-docs and theme refers to @docusaurus/theme-
classic.

docusaurus.config.js
Copy

For further help configuring themes, plugins, and presets, see Using Themes, Using Plugins, and Using Presets.

Custom configurations#

Docusaurus guards docusaurus.config.js from unknown fields. To add custom fields, define them in
customFields.

Example:

docusaurus.config.js
Copy

Accessing configuration from components#

Your configuration object will be made available to all the components of your site. And you may access them via
React context as siteConfig.

https://zowe-docs.netlify.app/docs/deployment
https://zowe-docs.netlify.app/docs/using-themes
https://zowe-docs.netlify.app/docs/using-plugins
https://zowe-docs.netlify.app/docs/presets
https://zowe-docs.netlify.app/docs/using-themes
https://zowe-docs.netlify.app/docs/using-plugins
https://zowe-docs.netlify.app/docs/presets

g

Basic example:

Copy

tip

If you just want to use those fields on the client side, you could create your own JS files and import them as ES6
modules, there is no need to put them in docusaurus.config.js.

Customizing Babel Configuration#

For new Docusaurus projects, we automatically generated a babel.config.js in project root.

babel.config.js
Copy

Most of the times, this configuration will work just fine. If you want to customize it, you can directly edit this file to
customize babel configuration. For your changes to take effect, you need to restart Docusaurus devserver.

Version: 2.0.0-beta.0

TypeScript Support

Setup#

Docusaurus supports writing and using TypeScript theme components. To start using TypeScript, add
@docusaurus/module-type-aliases and some @types dependencies to your project:

npm
Yarn

Copy

Then add tsconfig.json to your project root with the following content:

tsconfig.json
Copy

Docusaurus doesn't use this tsconfig.json to compile your project. It is added just for a nicer Editor experience,
although you can choose to run tsc to type check your code for yourself or on CI.

Now you can start writing TypeScript theme components.

Swizzling TypeScript theme components#

For themes that supports TypeScript theme components, you can add the --typescript flag to the end of swizzling
command to get TypeScript source code. For example, the following command will generate index.tsx and
styles.module.css into src/theme/Footer.

npm
Yarn

Copy

At this moment, the only official Docusaurus theme that supports TypeScript theme components is
@docusaurus/theme-classic. If you are a Docusaurus theme package author who wants to add TypeScript support,
see the Lifecycle APIs docs.

Version: 2.0.0-beta.0

Creating Pages

In this section, we will learn about creating pages in Docusaurus.

This is useful for creating one-off standalone pages like a showcase page, playground page or support page.

The functionality of pages is powered by @docusaurus/plugin-content-pages.

You can use React components, or Markdown.

note

Pages do not have sidebars, only docs have.

Add a React page#

Create a file /src/pages/helloReact.js:

/src/pages/helloReact.js
Copy

Once you save the file, the development server will automatically reload the changes. Now open
http://localhost:3000/helloReact, you will see the new page you just created.

Each page doesn't come with any styling. You will need to import the Layout component from @theme/Layout and
wrap your contents within that component if you want the navbar and/or footer to appear.

tip

You can also create TypeScript pages with the .tsx extension (helloReact.tsx).

Add a Markdown page#

Create a file /src/pages/helloMarkdown.md:

/src/pages/helloMarkdown.md
Copy

In the same way, a page will be created at http://localhost:3000/helloMarkdown.

Markdown pages are less flexible than React pages, because it always uses the theme layout.

Here's an example Markdown page.

https://zowe-docs.netlify.app/docs/lifecycle-apis#gettypescriptthemepath
https://zowe-docs.netlify.app/docs/docs-introduction
https://zowe-docs.netlify.app/examples/markdownPageExample

tip

You can use the full power of React in Markdown pages too, refer to the MDX documentation.

Routing#
If you are familiar with other static site generators like Jekyll and Next, this routing approach will feel familiar to
you. Any JavaScript file you create under /src/pages/ directory will be automatically converted to a website page,
following the /src/pages/ directory hierarchy. For example:

/src/pages/index.js → <baseUrl>
/src/pages/foo.js → <baseUrl>/foo
/src/pages/foo/test.js → <baseUrl>/foo/test
/src/pages/foo/index.js → <baseUrl>/foo/

In this component-based development era, it is encouraged to co-locate your styling, markup and behavior together
into components. Each page is a component, and if you need to customize your page design with your own styles, we
recommend co-locating your styles with the page component in its own directory. For example, to create a "Support"
page, you could do one of the following:

Add a /src/pages/support.js file
Create a /src/pages/support/ directory and a /src/pages/support/index.js file.

The latter is preferred as it has the benefits of letting you put files related to the page within that directory. For
example, a CSS module file (styles.module.css) with styles meant to only be used on the "Support" page. Note:
this is merely a recommended directory structure and you will still need to manually import the CSS module file
within your component module (support/index.js). By default, any Markdown or Javascript file starting with _
will be ignored, and no routes will be created for that file (see the exclude option).

Copy

caution

All JavaScript/TypeScript files within the src/pages/ directory will have corresponding website paths generated for
them. If you want to create reusable components into that directory, use the exclude option (by default, files prefixed
with _, test files(.test.js) and files in __tests__ directory are not turned into pages).

Using React#

React is used as the UI library to create pages. Every page component should export a React component, and you can
leverage on the expressiveness of React to build rich and interactive content.

Duplicate Routes#

You may accidentally create multiple pages that are meant to be accessed on the same route. When this happens,
Docusaurus will warn you about duplicate routes when you run yarn start or yarn build, but the site will still be
built successfully. The page that was created last will be accessible, but it will override other conflicting pages. To
resolve this issue, you should modify or remove any conflicting routes.

Version: 2.0.0-beta.0

Docs Introduction

https://mdxjs.com/

The docs feature provides users with a way to organize Markdown files in a hierarchical format.

Document ID#

Every document has a unique id. By default, a document id is the name of the document (without the extension)
relative to the root docs directory.

For example, greeting.md id is greeting and guide/hello.md id is guide/hello.

Copy

However, the last part of the id can be defined by user in the front matter. For example, if guide/hello.md's
content is defined as below, its final id is guide/part1.

Copy

If you want more control over the last part of the document URL, it is possible to add a slug (defaults to the id).

Copy

note

It is possible to use:

absolute slugs: slug: /mySlug, slug: /...
relative slugs: slug: mySlug, slug: ./../mySlug...

Home page docs#

If you want a document to be available at the root, and have a path like https://docusaurus.io/docs/, you can
use the slug frontmatter:

Copy

Docs-only mode#
If you only want the documentation feature, you can run your Docusaurus 2 site without a landing page and display
your documentation page as the index page instead.

To enable docs-only mode, set the docs plugin routeBasePath: '/', and use the frontmatter slug: / on the
document that should be the index page (more infos).

caution

You should delete the existing homepage at ./src/pages/index.js, or else there will be two files mapping to the
same route!

tip

There's also a "blog-only mode" for those who only want to use the blog feature of Docusaurus 2. You can use the
same method detailed above. Follow the setup instructions on Blog-only mode.

https://zowe-docs.netlify.app/docs/blog#blog-only-mode

sa e et od deta ed above. o ow t e setup st uct o s o og o y ode.

Version: 2.0.0-beta.0

Create a doc

Create a markdown file, greeting.md, and place it under the docs directory.

Copy

At the top of the file, specify id and title in the front matter, so that Docusaurus will pick them up correctly when
generating your site.

Copy

This will render in the browser as follows:

http://localhost:3000

Hello from Docusaurus

Are you ready to create the documentation site for your open source project?

Headers

will show up on the table of contents on the upper right

So that your users will know what this page is all about without scrolling down or even without reading too much.

Only h2 and h3 will be in the toc

The headers are well-spaced so that the hierarchy is clear.

lists will help you
present the key points
that you want your users to remember

and you may nest them
multiple times

Version: 2.0.0-beta.0

Sidebar

Creating a sidebar is useful to:

Group multiple related documents
Display a sidebar on each of those documents
Provide a paginated navigation, with next/previous button

To use sidebars on your Docusaurus site:

1. Define a file that exports a sidebar object.
2. Pass this object into the @docusaurus/plugin-docs plugin directly or via @docusaurus/preset-classic.

d fi j

https://zowe-docs.netlify.app/docs/blog#blog-only-mode

docusaurus.config.js
Copy

Default sidebar#

By default, Docusaurus automatically generates a sidebar for you, by using the filesystem structure of the docs
folder:

sidebars.js
Copy

You can also define your sidebars explicitly.

Sidebar object#

A sidebar is a tree of sidebar items.

Copy

A sidebars file can contain multiple sidebar objects.

Copy

Example:

sidebars.js
Copy

Notice the following:

There is a single sidebar mySidebar, containing 5 sidebar items
Getting Started and Docusaurus are sidebar categories
doc1, doc2 and doc3 are sidebar documents

tip

Use the shorthand syntax to express this sidebar more concisely:

sidebars.js
Copy

Using multiple sidebars#

You can create a sidebar for each set of markdown files that you want to group together.

tip

The Docusaurus site is a good example of using multiple sidebars:

Docs
API

E l

https://zowe-docs.netlify.app/docs/
https://zowe-docs.netlify.app/docs/cli

Example:

sidebars.js
Copy

note

The keys tutorialSidebar and apiSidebar are sidebar technical ids and do not matter much.

When browsing:

doc1 or doc2: the tutorialSidebar will be displayed
doc3 or doc4: the apiSidebar will be displayed

A paginated navigation link documents inside the same sidebar with next and previous buttons.

Understanding sidebar items#

SidebarItem is an item defined in a Sidebar tree.

There are different types of sidebar items:

Doc: link to a doc page, assigning it to the sidebar
Ref: link to a doc page, without assigning it to the sidebar
Link: link to any internal or external page
Category: create a hierarchy of sidebar items
Autogenerated: generate a sidebar slice automatically

Doc: link to a doc#

Use the doc type to link to a doc page and assign that doc to a sidebar:

Copy

Example:

sidebars.js
Copy

The sidebar_label markdown frontmatter has a higher precedence over the label key in SidebarItemDoc.

note

Don't assign the same doc to multiple sidebars: use a ref instead.

Ref: link to a doc, without sidebar#

Use the ref type to link to a doc page without assigning it to a sidebar.

Copy

Example:

sidebars.js

j
Copy

When browsing doc1, Docusaurus will not display the mySidebar sidebar.

Link: link to any page#

Use the link type to link to any page (internal or external) that is not a doc.

Copy

Example:

sidebars.js
Copy

Category: create a hierarchy#

Use the category type to create a hierarchy of sidebar items.

Copy

Example:

sidebars.js
Copy

tip

Use the shorthand syntax when you don't need category options:

sidebars.js
Copy

Collapsible categories#

For sites with a sizable amount of content, we support the option to expand/collapse a category to toggle the display
of its contents. Categories are collapsible by default. If you want them to be always expanded, set

themeConfig.sidebarCollapsible to false:

docusaurus.config.js
Copy

Expanded categories by default#

For docs that have collapsible categories, you may want more fine-grain control over certain categories. If you want
specific categories to be always expanded, you can set collapsed to false:

sidebars.js
Copy

Autogenerated: generate a sidebar#

Docusaurus can create a sidebar automatically from your filesystem structure: each folder creates a sidebar
category.

An autogenerated item is converted by Docusaurus to a sidebar slice: a list of items of type doc and category.

Copy

Docusaurus can generate a sidebar from your docs folder:

sidebars.js
Copy

You can also use multiple autogenerated items in a sidebar, and interleave them with regular sidebar items:

sidebars.js
Copy

Autogenerated sidebar metadatas#

By default, the sidebar slice will be generated in alphabetical order (using files and folders names).

If the generated sidebar does not look good, you can assign additional metadatas to docs and categories.

For docs: use additional frontmatter:

docs/tutorials/tutorial-easy.md
Copy

For categories: add a _category_.json or _category_.yml file in the appropriate folder:

docs/tutorials/_category_.json
Copy

docs/tutorials/_category_.yml
Copy

info

The position metadata is only used inside a sidebar slice: Docusaurus does not re-order other items of your sidebar.

Using number prefixes#

A simple way to order an autogenerated sidebar is to prefix docs and folders by number prefixes:

Copy

To make it easier to adopt, Docusaurus supports multiple number prefix patterns.

By default, Docusaurus will remove the number prefix from the doc id, title, label and url paths.

caution

Prefer using additional metadatas.

Updating a number prefix can be annoying, as it can require updating multiple existing markdown links:

docs/02-Tutorial Easy/01-First Part.md
Copy

Customize the sidebar items generator#

You can provide a custom sidebarItemsGenerator function in the docs plugin (or preset) config:

docusaurus.config.js
Copy

tip

Re-use and enhance the default generator instead of writing a generator from scratch.

Add, update, filter, re-order the sidebar items according to your use-case:

docusaurus.config.js
Copy

Hideable sidebar#

Using the enabled themeConfig.hideableSidebar option, you can make the entire sidebar hidden, allowing you to
better focus your users on the content. This is especially useful when content consumption on medium screens (e.g.
on tablets).

docusaurus.config.js
Copy

Passing custom props#

To pass in custom props to a swizzled sidebar item, add the optional customProps object to any of the items:

Copy

Complex sidebars example#
Real-world example from the Docusaurus site:

sidebars.js
Copy

Version: 2.0.0-beta.0

Versioning

You can use the version script to create a new documentation version based on the latest content in the docs
directory. That specific set of documentation will then be preserved and accessible even as the documentation in the
docs directory changes moving forward.

caution

hi k b i b f i i d i i b diffi l f ib h l

Think about it before starting to version your documentation - it can become difficult for contributors to help
improve it!

Most of the time, you don't need versioning as it will just increase your build time, and introduce complexity to your
codebase. Versioning is best suited for websites with high-traffic and rapid changes to documentation between
versions. If your documentation rarely changes, don't add versioning to your documentation.

To better understand how versioning works and see if it suits your needs, you can read on below.

Directory structure#

Copy

The table below explains how a versioned file maps to its version and the generated URL.

Path Version URL
versioned_docs/version-1.0.0/hello.md 1.0.0 /docs/1.0.0/hello
versioned_docs/version-1.1.0/hello.md 1.1.0 (latest) /docs/hello
docs/hello.md next /docs/next/hello

Tagging a new version#

1. First, make sure your content in the docs directory is ready to be frozen as a version. A version always should
be based from master.

2. Enter a new version number.

npm
Yarn

Copy

When tagging a new version, the document versioning mechanism will:

Copy the full docs/ folder contents into a new versioned_docs/version-<version>/ folder.
Create a versioned sidebars file based from your current sidebar configuration (if it exists) - saved as
versioned_sidebars/version-<version>-sidebars.json.
Append the new version number to versions.json.

Docs#

Creating new docs#
1. Place the new file into the corresponding version folder.
2. Include the reference for the new file into the corresponding sidebar file, according to version number.

Master docs

Copy

Older docs

Copy

Linking docs#

https://zowe-docs.netlify.app/docs/docs-introduction#sidebar

Linking docs#

Remember to include the .md extension.
Files will be linked to correct corresponding version.
Relative paths work as well.

Copy

Versions#

Each directory in versioned_docs/ will represent a documentation version.

Updating an existing version#

You can update multiple docs versions at the same time because each directory in versioned_docs/ represents
specific routes when published.

1. Edit any file.
2. Commit and push changes.
3. It will be published to the version.

Example: When you change any file in versioned_docs/version-2.6/, it will only affect the docs for version 2.6.

Deleting an existing version#

You can delete/remove versions as well.

1. Remove the version from versions.json.

Example:

Copy

2. Delete the versioned docs directory. Example: versioned_docs/version-1.8.0.
3. Delete the versioned sidebars file. Example: versioned_sidebars/version-1.8.0-sidebars.json.

Recommended practices#

Figure out the behavior for the "current" version#

The "current" version is the version name for the ./docs folder.

There are different ways to manage versioning, but two very common patterns are:

You release v1, and start immediately working on v2 (including its docs)
You release v1, and will maintain it for some time before thinking about v2.

Docusaurus defaults work great for the first usecase.

For the 2nd usecase: if you release v1 and don't plan to work on v2 anytime soon, instead of versioning v1 and
having to maintain the docs in 2 folders (./docs + ./versioned_docs/version-1.0.0), you may consider using the
following configuration instead:

Copy

py

The docs in ./docs will be served at /docs/1.0.0 instead of /docs/next, and 1.0.0 will become the default
version we link to in the navbar dropdown, and you will only need to maintain a single ./docs folder.

See docs plugin configuration for more details.

Version your documentation only when needed#

For example, you are building a documentation for your npm package foo and you are currently in version 1.0.0.
You then release a patch version for a minor bug fix and it's now 1.0.1.

Should you cut a new documentation version 1.0.1? You probably shouldn't. 1.0.1 and 1.0.0 docs shouldn't differ
according to semver because there are no new features!. Cutting a new version for it will only just create unnecessary
duplicated files.

Keep the number of versions small#

As a good rule of thumb, try to keep the number of your versions below 10. It is very likely that you will have a lot
of obsolete versioned documentation that nobody even reads anymore. For example, Jest is currently in version 24.9,
and only maintains several latest documentation version with the lowest being 22.X. Keep it small 😊

Use absolute import within the docs#

Don't use relative paths import within the docs. Because when we cut a version the paths no longer work (the nesting
level is different, among other reasons). You can utilize the @site alias provided by docusaurus, that points to the
website directory. Example:

Copy

Global or versioned colocated assets#

You should decide if assets like images and files are per version or shared between versions

If your assets should be versioned, put them in the docs version, and use relative paths:

Copy

If your assets are global, put them in /static and use absolute paths:

Copy
Version: 2.0.0-beta.0

Docs Markdown Features

Docs can use any Markdown feature, and have a few additional Docs-specific markdown features.

Markdown frontmatter#

Markdown docs have their own Markdown frontmatter

Referencing other documents#

https://zowe-docs.netlify.app/docs/api/plugins/@docusaurus/plugin-content-docs
https://jestjs.io/versions
https://zowe-docs.netlify.app/docs/markdown-features
https://zowe-docs.netlify.app/docs/api/plugins/@docusaurus/plugin-content-docs#markdown-frontmatter

If you want to reference another document file, you could use the name of the document you want to reference.
Docusaurus will convert the file path to be the final website path (and remove the .md).

For example, if you are in doc2.md and you want to reference doc1.md and folder/doc3.md:

Copy

One benefit of this approach is that the links to external files will still work if you are viewing the file on GitHub.

Another benefit, for versioned docs, is that one versioned doc will link to another doc of the exact same version.

Version: 2.0.0-beta.0

Docs Multi-instance

The @docusaurus/plugin-content-docs plugin can support multi-instance.

note

This feature is only useful for versioned documentations. It is recommended to be familiar with docs versioning
before reading this page.

Use-cases#

Sometimes you want a Docusaurus site to host 2 distinct sets of documentation (or more).

These documentations may even have different versioning/release lifecycles.

Mobile SDKs documentation#

If you build a cross-platform mobile SDK, you may have 2 documentations:

Android SDK documentation (v1.0, v1.1)
iOS SDK documentation (v1.0, v2.0)

In such case, you can use a distinct docs plugin instance per mobile SDK documentation.

caution

If each documentation instance is very large, you should rather create 2 distinct Docusaurus sites.

If someone edits the iOS documentation, is it really useful to rebuild everything, including the whole Android
documentation that did not change?

Versioned and unversioned doc#

Sometimes, you want some documents to be versioned, while other documents are more "global", and it feels useless
to version them.

We use this pattern on the Docusaurus website itself:

The /docs/* section is versioned
The /community/* section is unversioned

https://zowe-docs.netlify.app/docs/using-plugins#multi-instance-plugins-and-plugin-ids
https://zowe-docs.netlify.app/docs/versioning
https://zowe-docs.netlify.app/docs
https://zowe-docs.netlify.app/community/support

The /community/ section is unversioned

Setup#

Suppose you have 2 documentations:

Product: some versioned doc about your product
Community: some unversioned doc about the community around your product

In this case, you should use the same plugin twice in your site configuration.

caution

@docusaurus/preset-classic already includes a docs plugin instance for you!

When using the preset:

docusaurus.config.js
Copy

When not using the preset:

docusaurus.config.js
Copy

Don't forget to assign a unique id attribute to plugin instances.

note

We consider that the product instance is the most important one, and make it the "default" instance by not assigning
any id.

Versioned paths#

Each plugin instance will store versioned docs in a distinct folder.

The default plugin instance will use these paths:

website/versions.json
website/versioned_docs
website/versioned_sidebars

The other plugin instances (with an id attribute) will use these paths:

website/<pluginId>_versions.json
website/<pluginId>_versioned_docs
website/<pluginId>_versioned_sidebars

tip

You can omit the id attribute (defaults to default) for one of the docs plugin instances.

The instance paths will be simpler, and retro-compatible with a single-instance setup.

https://zowe-docs.netlify.app/community/support

Tagging new versions#

Each plugin instance will have its own cli command to tag a new version. They will be displayed if you run:

npm
Yarn

Copy

To version the product/default docs plugin instance:
npm
Yarn

Copy

To version the non-default/community docs plugin instance:

npm
Yarn

Copy

Docs navbar items#

Each docs-related theme navbar items take an optional docsPluginId attribute.

For example, if you want to have one version dropdown for each mobile SDK (iOS and Android), you could do:

docusaurus.config.js
Copy

Version: 2.0.0-beta.0

Blog

Initial setup#

To setup your site's blog, start by creating a blog directory.

Then, add an item link to your blog within docusaurus.config.js:

docusaurus.config.js
Copy

Adding posts#

To publish in the blog, create a file within the blog directory with a formatted name of YYYY-MM-DD-my-blog-post-
title.md. The post date is extracted from the file name.

For example, at my-website/blog/2019-09-05-hello-docusaurus-v2.md:

Copy

https://zowe-docs.netlify.app/docs/api/themes/configuration#navbar

Header options#

The only required field is title; however, we provide options to add author information to your blog post as well
along with other options.

author - The author name to be displayed.
author_url - The URL that the author's name will be linked to. This could be a GitHub, Twitter, Facebook
profile URL, etc.
author_image_url - The URL to the author's thumbnail image.
author_title - A description of the author.
title - The blog post title.
tags - A list of strings to tag to your post.
draft - A boolean flag to indicate that the blog post is work-in-progress and therefore should not be published
yet. However, draft blog posts will be displayed during development.
description: The description of your post, which will become the <meta name="description"
content="..."/> and <meta property="og:description" content="..."/> in <head>, used by search
engines. If this field is not present, it will default to the first line of the contents.
image: Cover or thumbnail image that will be used when displaying the link to your post.
hide_table_of_contents: Whether to hide the table of contents to the right. By default it is false.

Summary truncation#

Use the <!--truncate--> marker in your blog post to represent what will be shown as the summary when viewing
all published blog posts. Anything above <!--truncate--> will be part of the summary. For example:

Copy

Feed#

You can generate RSS/Atom feed by passing feedOptions. By default, RSS and Atom feeds are generated. To disable
feed generation, set feedOptions.type to null.

Copy

Example usage:

docusaurus.config.js
Copy

Accessing the feed:

The feed for RSS can be found at:

Copy

and for Atom:

Copy

Advanced topics#

Blog-only mode#

You can run your Docusaurus 2 site without a landing page and instead have your blog's post list page as the index
page. Set the routeBasePath to be '/' to indicate it's the root path.

docusaurus.config.js
Copy

caution

Don't forget to delete the existing homepage at ./src/pages/index.js or else there will be two files mapping to the
same route!

You can also add meta description to the blog list page for better SEO:

docusaurus.config.js
Copy

Multiple blogs#

By default, the classic theme assumes only one blog per website and hence includes only one instance of the blog
plugin. If you would like to have multiple blogs on a single website, it's possible too! You can add another blog by
specifying another blog plugin in the plugins option for docusaurus.config.js.

Set the routeBasePath to the URL route that you want your second blog to be accessed on. Note that the
routeBasePath here has to be different from the first blog or else there could be a collision of paths! Also, set path
to the path to the directory containing your second blog's entries.

As documented for multi-instance plugins, you need to assign a unique id to the plugins.

docusaurus.config.js

Copy

As an example, we host a second blog here.

Version: 2.0.0-beta.0

Markdown Features introduction

Documentation is one of your product's interfaces with your users. A well-written and well-organized set of docs
helps your users understand your product quickly. Our aligned goal here is to help your users find and understand the
information they need, as quickly as possible.

Docusaurus 2 uses modern tooling to help you compose your interactive documentations with ease. You may embed
React components, or build live coding blocks where your users may play with the code on the spot. Start sharing
your eureka moments with the code your audience cannot walk away from. It is perhaps the most effective way of
attracting potential users.

In this section, we'd like to introduce you to the tools we've picked that we believe will help you build a powerful
documentation. Let us walk you through with an example.

Markdown is a syntax that enables you to write formatted content in a readable syntax.

The standard Markdown syntax is supported, and we use MDX as the parsing engine, which can do much more than
just parsing Markdown like rendering React components inside your documents

https://zowe-docs.netlify.app/docs/using-plugins#multi-instance-plugins-and-plugin-ids
https://zowe-docs.netlify.app/second-blog
https://daringfireball.net/projects/markdown/syntax
https://mdxjs.com/

just parsing Markdown, like rendering React components inside your documents.

important

This section assumes you are using the official Docusaurus content plugins.

Version: 2.0.0-beta.0

Using React

Docusaurus has built-in support for MDX, which allows you to write JSX within your Markdown files and render
them as React components.

note

While both .md and .mdx files are parsed using MDX, some of the syntax are treated slightly differently. For the
most accurate parsing and better editor support, we recommend using the .mdx extension for files containing MDX
syntax.

Try this block here:

Copy

Notice how it renders both the markup from your React component and the Markdown syntax:

http://localhost:3000
Docusaurus green and Facebook blue are my favorite colors.

I can write Markdown alongside my JSX!

You can also import your own components defined in other files or third-party components installed via npm! Check
out the MDX docs to see what other fancy stuff you can do with MDX.

caution

Since all doc files are parsed using MDX, any HTML is treated as JSX. Therefore, if you need to inline-style a
component, follow JSX flavor and provide style objects. This behavior is different from Docusaurus 1. See also
Migrating from v1 to v2.

Version: 2.0.0-beta.0

Tabs

https://mdxjs.com/
https://mdxjs.com/
https://zowe-docs.netlify.app/docs/migration/manual#convert-style-attributes-to-style-objects-in-mdx

To show tabbed content within Markdown files, you can fall back on MDX. Docusaurus provides <Tabs>
components out-of-the-box.

Copy

And you will get the following:

Apple
Orange
Banana

This is an apple 🍎

info

By default, tabs are rendered eagerly, but it is possible to load them lazily by passing the lazy prop to the Tabs
component.

Syncing tab choices#

You may want choices of the same kind of tabs to sync with each other. For example, you might want to provide
different instructions for users on Windows vs users on macOS, and you want to changing all OS-specific
instructions tabs in one click. To achieve that, you can give all related tabs the same groupId prop. Note that doing
this will persist the choice in localStorage and all <Tab> instances with the same groupId will update automatically
when the value of one of them is changed. Note that groupID are globally-namespaced.

Copy

Windows
macOS

Use Ctrl + C to copy.

Windows
macOS

Use Ctrl + V to paste.

For all tab groups that have the same groupId, the possible values do not need to be the same. If one tab group with
chooses an value that does not exist in another tab group with the same groupId, the tab group with the missing
value won't change its tab. You can see that from the following example. Try to select Linux, and the above tab
groups doesn't change.

Copy

Windows
macOS
Linux

I am Windows.

Tab choices with different groupIds will not interfere with each other:

Copy

Windows
macOS

Windows in windows.

Windows
Unix

Windows is windows.

Customizing tabs#

You might want to customize the appearance of certain set of tabs. To do that you can pass the string in className
prop and the specified CSS class will be added to the Tabs component:

Copy

Apple
Orange
Banana

This is an apple 🍎
Version: 2.0.0-beta.0

Code blocks

Code blocks within documentation are super-powered 💪.

Code title#

You can add a title to the code block by adding title key after the language (leave a space between them).

Copy
/src/components/HelloCodeTitle.js

Copy

Syntax highlighting#
Code blocks are text blocks wrapped around by strings of 3 backticks. You may check out this reference for
specifications of MDX.

Copy

Use the matching language meta string for your code block, and Docusaurus will pick up syntax highlighting
automatically, powered by Prism React Renderer.

Copy

By default, the Prism syntax highlighting theme we use is Palenight. You can change this to another theme by
passing theme field in prism as themeConfig in your docusaurus config js

https://github.com/mdx-js/specification
https://github.com/FormidableLabs/prism-react-renderer
https://github.com/FormidableLabs/prism-react-renderer#theming
https://github.com/FormidableLabs/prism-react-renderer/blob/master/src/themes/palenight.js

passing theme field in prism as themeConfig in your docusaurus.config.js.

For example, if you prefer to use the dracula highlighting theme:

docusaurus.config.js
Copy

By default, Docusaurus comes with a subset of commonly used languages.

caution

Some popular languages like Java, C#, or PHP are not enabled by default.

To add syntax highlighting for any of the other Prism supported languages, define it in an array of additional
languages.

For example, if you want to add highlighting for the powershell language:

docusaurus.config.js
Copy

If you want to add highlighting for languages not yet supported by Prism, you can swizzle prism-include-
languages:

npm

Yarn

Copy

It will produce prism-include-languages.js in your src/theme folder. You can add highlighting support for
custom languages by editing prism-include-languages.js:

src/theme/prism-include-languages.js
Copy

You can refer to Prism's official language definitions when you are writing your own language definitions.

Line highlighting#

You can bring emphasis to certain lines of code by specifying line ranges after the language meta string (leave a
space after the language).

Copy
Copy

To accomplish this, Docusaurus adds the docusaurus-highlight-code-line class to the highlighted lines. You will
need to define your own styling for this CSS, possibly in your src/css/custom.css with a custom background color
which is dependent on your selected syntax highlighting theme. The color given below works for the default
highlighting theme (Palenight), so if you are using another theme, you will have to tweak the color accordingly.

/src/css/custom.css
Copy

To highlight multiple lines, separate the line numbers by commas or use the range syntax to select a chunk of lines.
Thi f h lib d fi d h i j d il

https://github.com/FormidableLabs/prism-react-renderer/blob/master/src/vendor/prism/includeLangs.js
https://prismjs.com/#supported-languages
https://github.com/PrismJS/prism/tree/master/components
https://www.npmjs.com/package/parse-numeric-range

This feature uses the parse-number-range library and you can find more syntax on their project details.

Copy
Copy

You can also use comments with highlight-next-line, highlight-start, and highlight-end to select which
lines are highlighted.

Copy
Copy

Supported commenting syntax:

Language Syntax
JavaScript /* ... */ and // ...
JSX {/* ... */}

Python # ...

HTML <!-- ... -->

If there's a syntax that is not currently supported, we are open to adding them! Pull requests welcome.

Interactive code editor#

(Powered by React Live)

You can create an interactive coding editor with the @docusaurus/theme-live-codeblock plugin.

First, add the plugin to your package.

npm
Yarn

Copy

You will also need to add the plugin to your docusaurus.config.js.

Copy

To use the plugin, create a code block with live attached to the language meta string.

Copy

The code block will be rendered as an interactive editor. Changes to the code will reflect on the result panel live.

Live Editor
function Clock(props) {
 const [date, setDate] = useState(new Date());
 useEffect(() => {
 var timerID = setInterval(() => tick(), 1000);

 return function cleanup() {
 clearInterval(timerID);
 };
 });

function Clock(props) {
 const [date, setDate] = useState(new Date());
 useEffect(() => {
 var timerID = setInterval(() => tick(), 1000);

 return function cleanup() {
 clearInterval(timerID);
 };
 });

https://www.npmjs.com/package/parse-numeric-range
https://github.com/FormidableLabs/react-live

Result

It is 13:30:21.

Imports#

react-live and imports

It is not possible to import components directly from the react-live code editor, you have to define available imports
upfront.

By default, all React imports are available. If you need more imports available, swizzle the react-live scope:

npm

Yarn

Copy
src/theme/ReactLiveScope/index.js

Copy

The ButtonExample component is now available to use:

Live Editor

Result

Click me

Multi-language support code blocks#

With MDX, you can easily create interactive components within your documentation, for example, to display code in
multiple programming languages and switching between them using a tabs component.

Instead of implementing a dedicated component for multi-language support code blocks, we've implemented a
generic Tabs component in the classic theme so that you can use it for other non-code scenarios as well.

The following example is how you can have multi-language code tabs in your docs. Note that the empty lines above
d b l h l bl k i hi i li i i f h l li

 function tick() {
 setDate(new Date());
 }

 return (
 <div>
 <h2>It is {date.toLocaleTimeString()}.</h2>
 </div>
);
}

 function tick() {
 setDate(new Date());
 }

 return (
 <div>
 <h2>It is {date.toLocaleTimeString()}.</h2>
 </div>
);
}

function MyPlayground(props) {
 return (
 <div>
 <ButtonExample onClick={() => alert('hey!')}>Click me</ButtonExample>
 </div>
);
}

function MyPlayground(props) {
 return (
 <div>
 <ButtonExample onClick={() => alert('hey!')}>Click me</ButtonExample>
 </div>
);
}

and below each language block is intentional. This is a current limitation of MDX, you have to leave empty lines
around Markdown syntax for the MDX parser to know that it's Markdown syntax and not JSX.

Copy

And you will get the following:

JavaScript
Python
Java

Copy

You may want to implement your own <MultiLanguageCode /> abstraction if you find the above approach too
verbose. We might just implement one in future for convenience.

If you have multiple of these multi-language code tabs, and you want to sync the selection across the tab instances,
refer to the Syncing tab choices section.

Version: 2.0.0-beta.0

Admonitions

In addition to the basic Markdown syntax, we use remark-admonitions alongside MDX to add support for
admonitions. Admonitions are wrapped by a set of 3 colons.

Example:

Copy

note

The content and title can include markdown.

You can specify an optional title

Heads up! Here's a pro-tip.

info

Useful information.

caution

Warning! You better pay attention!

danger

Danger danger, mayday!

Specifying title#

https://github.com/elviswolcott/remark-admonitions

You may also specify an optional title

Copy

Your Title

The content and title can include Markdown.

Version: 2.0.0-beta.0

Headings

Markdown headings#

You can use regular Markdown headings.

Copy

Markdown headings appear as a table-of-contents entry.

Heading ids#

Each heading has an id that can be automatically generated, or explicitly specified.

Heading ids allow you to link to a specific document heading in Markdown or JSX:

Copy
Copy

Generated ids#

By default, Docusaurus will generate heading ids for you, based on the heading text.

Hello World will have id hello-world.

Generated ids have some limits:

The id might not look good
You might want to change or translate the text without updating the existing id

Explicit ids#

A special Markdown syntax lets you set an explicit heading id:

Copy

tip

Use the write-heading-ids CLI command to add explicit ids to all your Markdown documents.

Version: 2.0.0-beta.0

https://zowe-docs.netlify.app/docs/cli#docusaurus-write-heading-ids-sitedir

Inline TOC

Each markdown document displays a tab of content on the top-right corner.

But it is also possible to display an inline table of contents directly inside a markdown document, thanks to MDX.

Full table of contents#

The toc variable is available in any MDX document, and contain all the top level headings of a MDX document.

Copy

Full table of contents
Custom table of contents
Example Section 1

Example Subsection 1 a
Example Subsection 1 b
Example Subsection 1 c

Example Section 2
Example Subsection 2 a
Example Subsection 2 b
Example Subsection 2 c

Example Section 3
Example Subsection 3 a
Example Subsection 3 b
Example Subsection 3 c

Custom table of contents#

The toc props is just a list of table of contents items:

Copy

You can create this TOC tree manually, or derive a new TOC tree from the toc variable:

Copy

Example Section 1
Example Subsection 1 a
Example Subsection 1 b
Example Subsection 1 c

Example Section 3
Example Subsection 3 a
Example Subsection 3 b
Example Subsection 3 c

caution

The underlying content is just an example to have more table-of-contents items available in current page.

Example Section 1#

p

Lorem ipsum

Example Subsection 1 a#

Lorem ipsum

Example Subsection 1 b#

Lorem ipsum

Example Subsection 1 c#

Lorem ipsum

Example Section 2#

Lorem ipsum

Example Subsection 2 a#

Lorem ipsum

Example Subsection 2 b#

Lorem ipsum

Example Subsection 2 c#

Lorem ipsum

Example Section 3#
Lorem ipsum

Example Subsection 3 a#

Lorem ipsum

Example Subsection 3 b#

Lorem ipsum

Example Subsection 3 c#

Lorem ipsum

Version: 2.0.0-beta.0

Assets

Sometimes you want to link to static assets directly from Markdown files, and it is convenient to co-locate the asset
next to the markdown file using it.

We have setup Webpack loaders to handle most common file types, so that when you import a file, you get its url,
and the asset is automatically copied to the output folder.

Let's imagine the following file structure:

Copy

Images#

You can use images in Markdown, or by requiring them and using a JSX image tag:

Copy

The ES imports syntax also works:

Copy

This results in displaying the image:

note

If you are using @docusaurus/plugin-ideal-image, you need to use the dedicated image component, as documented.

Files#

In the same way, you can link to existing assets by requiring them and using the returned url in videos, links etc.

Copy
Download this PDF

Download this PDF using Markdown

Inline SVGs#

Docusaurus supports inlining SVGs out of the box.

Copy

https://zowe-docs.netlify.app/docs/using-plugins#docusaurusplugin-ideal-image
https://zowe-docs.netlify.app/assets/files/docusaurus-asset-example-pdf-aef54daa5b1fe3359942dac7ade1daae.pdf
https://zowe-docs.netlify.app/assets/files/docusaurus-asset-example-pdf-aef54daa5b1fe3359942dac7ade1daae.pdf

This can be useful, if you want to alter the part of the SVG image via CSS. For example, you can change one of the
SVG colors based on the current theme.

Copy
Copy

Themed Images#

Docusaurus supports themed images: the ThemedImage component (included in the classic/bootstrap themes) allows
you to switch the image source based on the current theme.

Copy
Version: 2.0.0-beta.0

Plugins

You can expand the MDX functionalities, using plugins.

Docusaurus content plugins support both Remark and Rehype plugins that work with MDX.

Configuring plugins#

An MDX plugin is usually a npm package, so you install them like other npm packages using npm.

First, install your Remark and Rehype plugins.

For example:

npm
Yarn

Copy

Next, import the plugins:

https://github.com/remarkjs/remark
https://github.com/rehypejs/rehype
https://github.com/remarkjs/remark/blob/main/doc/plugins.md#list-of-plugins
https://github.com/rehypejs/rehype/blob/main/doc/plugins.md#list-of-plugins

Ne t, po t t e p ug s:

Copy

Finally, add them to the @docusaurus/preset-classic options in docusaurus.config.js:

docusaurus.config.js
Copy

Configuring plugin options#

Some plugins can be configured and accept their own options. In that case, use the [plugin, pluginOptions]
syntax, like so:

docusaurus.config.js
Copy

See more information in the MDX documentation.

Version: 2.0.0-beta.0

Styling and Layout

Traditional CSS#

If you're using @docusaurus/preset-classic, you can create your own CSS files (e.g. /src/css/custom.css) and
import them globally by passing it as an option into the preset.

docusaurus.config.js
Copy

Any CSS you write within that file will be available globally and can be referenced directly using string literals. This
is the most traditional approach to writing CSS and is fine for small websites that do not have much customization.

Styling your site with Infima#

@docusaurus/preset-classic uses Infima as the underlying styling framework. Infima provides flexible layout and
common UI components styling suitable for content-centric websites (blogs, documentation, landing pages). For
more details, check out the Infima website.

When you init your Docusaurus 2 project, the website will be generated with basic Infima stylesheets and default
styling. You may customize the styling by editing the /src/css/custom.css file.

/src/css/custom.css
Copy

Infima uses 7 shades of each color. We recommend using ColorBox to find the different shades of colors for your
chosen primary color.

Alternatively, use the following tool to generate the different shades for your website and copy the variables into
/src/css/custom.css.

Primary Color: 3578e5

https://mdxjs.com/advanced/plugins
https://infima.dev/
https://infima.dev/
https://www.colorbox.io/

CSS Variable Name Hex Adjustment
--ifm-color-primary-lightest #80aaef -30

--ifm-color-primary-lighter #5a91ea -15

--ifm-color-primary-light #4e89e8 -10
--ifm-color-primary #3578e5 0
--ifm-color-primary-dark #1d68e1 10

--ifm-color-primary-darker #1b62d4 15

--ifm-color-primary-darkest #1751af 30

Replace the variables in src/css/custom.css with these new variables.

Copy

Dark Mode#

To customize the Infima variables for dark mode you can add the following to src/css/custom.css.

/src/css/custom.css
Copy

Styling approaches#

A Docusaurus site is a single-page React application. You can style it the way you style React apps.

There are a few approaches/frameworks which will work, depending on your preferences and the type of website you
are trying to build. Websites that are highly interactive and behave more like web apps will benefit from a more
modern styling approaches that co-locate styles with the components. Component styling can also be particularly
useful when you wish to customize or swizzle a component.

Global styles#

This is the most traditional way of styling that most developers (including non-front end developers) would be
familiar with.

Assuming you are using @docusaurus/preset-classic and /src/css/custom.css was passed in to the preset
config, styles inside that file would be available globally.

/src/css/custom.css
Copy
Copy

Theme Class Names#

We provide some predefined CSS class names to provide access for developers to style layout of a page globally in
Docusaurus. The purpose is to have stable classnames shared by all themes that are meant to be targeted by custom
CSS.

Copy

CSS modules#

CSS modules#

To style your components using CSS Modules, name your stylesheet files with the .module.css suffix (e.g.
welcome.module.css). webpack will load such CSS files as CSS modules and you have to reference the class names
from the imported CSS module (as opposed to using plain strings). This is similar to the convention used in Create
React App.

styles.module.css
Copy
Copy

The class names which will be processed by webpack into a globally unique class name during build.

CSS-in-JS#

caution

This section is a work in progress. Welcoming PRs.

Sass/SCSS#

To use Sass/SCSS as your CSS preprocessor, install the unofficial Docusaurus 2 plugin docusaurus-plugin-sass.
This plugin works for both global styles and the CSS modules approach:

1. Install docusaurus-plugin-sass:

npm
Yarn

Copy

2. Include the plugin in your docusaurus.config.js file:

docusaurus.config.js
Copy

3. Write and import your stylesheets in Sass/SCSS as normal.

Global styles using Sass/SCSS#

You can now set the customCss property of @docusaurus/preset-classic to point to your Sass/SCSS file:

docusaurus.config.js
Copy

Modules using Sass/SCSS#

Name your stylesheet files with the .module.scss suffix (e.g. welcome.module.scss) instead of .css. Webpack
will use sass-loader to preprocess your stylesheets and load them as CSS modules.

styles.module.scss
Copy
Copy

Version: 2.0.0-beta.0

https://github.com/css-modules/css-modules
https://facebook.github.io/create-react-app/docs/adding-a-css-modules-stylesheet
https://github.com/facebook/docusaurus/issues/1640
https://github.com/rlamana/docusaurus-plugin-sass
https://github.com/rlamana/docusaurus-plugin-sass

Static Assets

Every website needs assets: images, stylesheets, favicons etc. In such cases, you can create a directory named static
at the root of your project.

Every file you put into that directory will be copied into the root of the generated build folder with the directory
hierarchy preserved. E.g. if you add a file named sun.jpg to the static folder, it will be copied to build/sun.jpg.

This means that:

for site baseUrl: '/', the image /static/img/docusaurus.png will be served at /img/docusaurus.png.
for site baseUrl: '/subpath/', the image /static/img/docusaurus.png will be served at
/subpath/img/docusaurus.png.

Referencing your static asset#

You can reference assets from the static folder in your code using absolute paths, but this is not ideal because
changing the site baseUrl will break those links.

You can import / require() the static asset (recommended), or use the useBaseUrl utility function: both prepend
the baseUrl to paths for you.

JSX example#

MyComponent.js
Copy

MyComponent.js
Copy

MyComponent.js
Copy

You can also import SVG files: they will be transformed into React components.

MyComponent.js
Copy

Markdown example#

Markdown links and images referencing assets of the static folder will be converted to
require("@site/static/assetName.png")", and the site baseUrl will be automatically prepended for you.

my-doc.md
Copy

Thanks to MDX, you can also use useBaseUrl utility function in Markdown files! You'd have to use html tags like
 instead of the Markdown image syntax though. The syntax is exactly the same as in JSX.

my-doc.mdx
Copy

Caveats#

Keep in mind that:

By default, none of the files in static folder will be post-processed, hashed or minified.
Missing files referenced via hardcoded absolute paths will not be detected at compilation time, and will result
in a 404 error.
By default, GitHub Pages runs published files through Jekyll. Since Jekyll will discard any files that begin
with _, it is recommended that you disable Jekyll by adding an empty file named .nojekyll file to your
static directory if you are using GitHub pages for hosting.

Version: 2.0.0-beta.0

Search

Docusaurus' own @docusaurus/preset-classic supports a search integration.

There are two main options, you can use Algolia DocSearch or bring in your own SearchBar component.

Using Algolia DocSearch#

Algolia DocSearch works by crawling the content of your website every 24 hours and putting all the content in an
Algolia index. This content is then queried directly from your front-end using the Algolia API. Note that your
website needs to be publicly available for this to work (i.e., not behind a firewall). The service is free.

If your website is not eligible for the free, hosted version of DocSearch, or if your website sits behind a firewall, then
you can run your own DocSearch crawler. For best results, you may want to use a config file based on the
Docusaurus 2 config.

Connecting Algolia#

To connect your docs with Algolia, add an algolia field in your themeConfig. Apply for DocSearch to get your
Algolia index and API key.

docusaurus.config.js
Copy

info

The searchParameters option used to be named algoliaOptions in Docusaurus v1.

Contextual search#

Contextual search is mostly useful for versioned Docusaurus sites.

Let's consider you have 2 docs versions, v1 and v2. When you are browsing v2 docs, it would be odd to return search
results for the v1 documentation. Sometimes v1 and v2 docs are quite similar, and you would end up with duplicate
search results for the same query (one result per version).

To solve this problem, the contextual search feature understands that you are browsing a specific docs version, and
will create the search query filters dynamically.

browsing /docs/v1/myDoc, search results will only include v1 docs (+ other unversioned pages)
browsing /docs/v2/myDoc, search results will only include v2 docs (+ other unversioned pages)

https://jekyllrb.com/
https://docsearch.algolia.com/
https://docsearch.algolia.com/docs/who-can-apply
https://docsearch.algolia.com/docs/run-your-own/
https://github.com/algolia/docsearch-configs/blob/master/configs/docusaurus-2.json
https://docsearch.algolia.com/apply/

docusaurus.config.js
Copy

caution

When using contextualSearch: true, the contextual facet filters will be merged with the ones provided with
algolia.searchParameters.facetFilters.

Custom Application ID#

When running your own DocSearch crawler, it is required to set the appId configuration key to your own
Application ID. If left unset, the appId will fallback to the one used with the free, hosted version of Algolia
DocSearch.

docusaurus.config.js
Copy

Styling your Algolia search#

By default, DocSearch comes with a fine-tuned theme that was designed for accessibility, making sure that colors
and contrasts respect standards.

Still, you can reuse the Infima CSS variables from Docusaurus to style DocSearch by editing the
/src/css/custom.css file.

/src/css/custom.css
Copy

Customizing the Algolia search behavior#

Algolia DocSearch supports a list of options that you can pass to the algolia field in the docusaurus.config.js
file.

docusaurus.config.js
Copy

Editing the Algolia search component#

If you prefer to edit the Algolia search React component, swizzle the SearchBar component in @docusaurus/theme-
search-algolia:

npm
Yarn

Copy

Using your own search#

To use your own search, swizzle the SearchBar component in @docusaurus/theme-classic

npm
Yarn

https://docsearch.algolia.com/docs/run-your-own/
https://docsearch.algolia.com/docs/behavior/#appid
https://zowe-docs.netlify.app/docs/styling-layout#styling-your-site-with-infima
https://autocomplete-experimental.netlify.app/docs/DocSearchModal#reference

Yarn

Copy

This will create a src/themes/SearchBar file in your project folder. Restart your dev server and edit the component,
you will see that Docusaurus uses your own SearchBar component now.

Notes: You can alternatively swizzle from Algolia SearchBar and create your own search component from there.

Version: 2.0.0-beta.0

Browser support

Docusaurus allows sites to define the list of supported browsers through a browserslist configuration.

Purpose#

Websites need to balance between backward compatibility and bundle size. As old browsers do not support modern
APIs or syntax, more code is needed to implement the same functionality, penalizing all other users with increased
site load time. As a tradeoff, the Docusaurus bundler only supports browser versions defined in the browser list.

The browser list by default is provided through the package.json file as a root browserslist field.

caution

On old browsers, the compiled output will use unsupported (too recent) JS syntax, causing React to fail to initialize
and ending up with a static website with only HTML/CSS and no JS.

Default values#

Websites initialized with the default classic template has the following in package.json:

package.json
Copy

Explained in natural language, the browsers supported in production are those:

With more than 0.5% of market share; and
Has official support or updates in the past 24 months (the opposite of "dead"); and
Is not Opera Mini.

And browsers used in development are:

The latest version of Chrome or Firefox or Safari.

You can "evaluate" any config with the browserlist cli to obtain the actual list:

Copy

The output are all browsers supported in production. Below is the output in May, 2021:

Copy

Read more#

https://github.com/browserslist/browserslist

Read more#

You may wish to visit the browserslist documentation for more specifications, especially the accepted query values
and best practices.

Version: 2.0.0-beta.0

Deployment

To build the static files of your website for production, run:

npm
Yarn

Copy

Once it finishes, the static files will be generated within the build/ directory.

You can deploy your site to static site hosting services such as Vercel, GitHub Pages, Netlify, Render, and Surge.
Docusaurus sites are statically rendered so they work without JavaScript too!

Testing Build Local#

It is important to test build before deploying to a production. Docusaurus includes a docusaurus serve command to
test build locally.

npm
Yarn

Copy

Self Hosting#

warning

It is not the most performant solution

Docusaurus can be self hosted using docusaurus serve. Change port using --port and --host to change host.

npm
Yarn

Copy

Deploying to GitHub Pages#

Docusaurus provides an easy way to publish to GitHub Pages. Which is hosting that comes for free with every
GitHub repository.

docusaurus.config.js settings#

First, modify your docusaurus.config.js and add the required params:

https://github.com/browserslist/browserslist/blob/main/README.md
https://github.com/browserslist/browserslist/blob/main/README.md#queries
https://github.com/browserslist/browserslist/blob/main/README.md#best-practices
https://vercel.com/
https://pages.github.com/
https://www.netlify.com/
https://render.com/docs/static-sites
https://surge.sh/help/getting-started-with-surge
https://zowe-docs.netlify.app/docs/cli#docusaurus-serve
https://zowe-docs.netlify.app/docs/cli#docusaurus-serve
https://pages.github.com/

Name Description

organizationName
The GitHub user or organization that owns the repository. If you are the owner, it is your
GitHub username. In the case of Docusaurus, it is "facebook" which is the GitHub organization
that owns Docusaurus.

projectName The name of the GitHub repository. For example, the repository name for Docusaurus is
"docusaurus", so the project name is "docusaurus".

url URL for your GitHub Page's user/organization page. This is commonly
https://_username_.github.io.

baseUrl Base URL for your project. For projects hosted on GitHub pages, it follows the format
"/projectName/". For https://github.com/facebook/docusaurus, baseUrl is /docusaurus/.

info

In case you want to use your custom domain for GitHub Pages, create a CNAME file in the static directory. Anything
within the static directory will be copied to the root of the build directory for deployment.

You may refer to GitHub Pages' documentation User, Organization, and Project Pages for more details.

Example:

docusaurus.config.js
Copy

warning

By default, GitHub Pages runs published files through Jekyll. Since Jekyll will discard any files that begin with _, it
is recommended that you disable Jekyll by adding an empty file named .nojekyll file to your static directory.

Environment settings#

Specify the Git user as an environment variable.

Name Description

GIT_USER
The username for a GitHub account that has commit access to this repo. For your own repositories, this
will usually be your GitHub username. The specified GIT_USER must have push access to the repository
specified in the combination of organizationName and projectName.

Optional parameters, also set as environment variables:

Name Description
USE_SSH Set to true to use SSH instead of the default HTTPS for the connection to the GitHub repo.

DEPLOYMENT_BRANCH The branch that the website will be deployed to, defaults to gh-pages for normal repos and
master for repository names ending in github.io.

CURRENT_BRANCH
The branch that contains the latest docs changes that will be deployed. Usually, the branch will
be master, but it could be any branch (default or otherwise) except for gh-pages. If nothing is
set for this variable, then the current branch will be used.
Password (or token) of the git user (specified by GIT USER). For example, to facilitate non-

https://_username_.github.io/
https://github.com/facebook/docusaurus
https://help.github.com/en/articles/user-organization-and-project-pages
https://jekyllrb.com/

Name DescriptionGIT_PASS Password (or token) of the git user (specified by GIT_USER). For example, to facilitate non
interactive deployment (e.g. continuous deployment)

GitHub enterprise installations should work in the same manner as github.com; you only need to set the
organization's GitHub Enterprise host as an environment variable:

Name Description
GITHUB_HOST The domain name of your GitHub enterprise site.
GITHUB_PORT The port of your GitHub enterprise site.

Deploy#

Finally, to deploy your site to GitHub Pages, run:

Bash
Windows
PowerShell

Copy

Triggering deployment with GitHub Actions#

GitHub Actions allow you to automate, customize, and execute your software development workflows right in your
repository.

This workflow assumes your documentation resided in documentation branch of your repository and your
publishing source is configured for gh-pages branch.

1. Generate a new SSH key.
2. By default, your public key should have been created in ~/.ssh/id_rsa.pub or use the name you've provided

in the previous step to add your key to GitHub deploy keys.
3. Copy key to clipboard with xclip -sel clip < ~/.ssh/id_rsa.pub and paste it as a deploy key in your

repository. Copy file content if the command line doesn't work for you. Check the box for Allow write
access before saving your deployment key.

4. You'll need your private key as a GitHub secret to allow Docusaurus to run the deployment for you.
5. Copy your private key with xclip -sel clip < ~/.ssh/id_rsa and paste a GitHub secret with name

GH_PAGES_DEPLOY. Copy file content if the command line doesn't work for you. Save your secret.
6. Create you documentation workflow file in .github/workflows/. In this example it's documentation.yml.

warning

Please make sure that you replace actions@github.com with your GitHub email and gh-actions with your name.

documentation.yml
Copy

1. Now when a new pull request arrives towards your repository in branch documentation it will automatically
ensure that Docusaurus build is successful.

2. When pull request is merged to documentation branch or someone pushes to documentation branch directly
it will be built and deployed to gh-pages branch.

3. After this step, your updated documentation will be available on the GitHub pages.

Triggering deployment with Travis CI#

Continuous integration (CI) services are typically used to perform routine tasks whenever new commits are checked

https://help.github.com/en/actions
https://help.github.com/en/github/working-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://developer.github.com/v3/guides/managing-deploy-keys/
https://developer.github.com/v3/guides/managing-deploy-keys/#deploy-keys
https://help.github.com/en/actions/configuring-and-managing-workflows/creating-and-storing-encrypted-secrets
https://help.github.com/en/actions/configuring-and-managing-workflows/configuring-a-workflow#creating-a-workflow-file

Continuous integration (CI) services are typically used to perform routine tasks whenever new commits are checked
in to source control. These tasks can be any combination of running unit tests and integration tests, automating
builds, publishing packages to NPM, and deploying changes to your website. All you need to do to automate the
deployment of your website is to invoke the yarn deploy script whenever your website is updated. The following
section covers how to do just that using Travis CI, a popular continuous integration service provider.

1. Go to https://github.com/settings/tokens and generate a new personal access token. When creating the token,
grant it the repo scope so that it has the permissions it needs.

2. Using your GitHub account, add the Travis CI app to the repository you want to activate.
3. Open your Travis CI dashboard. The URL looks like https://travis-ci.com/USERNAME/REPO, and navigate

to the More options > Setting > Environment Variables section of your repository.
4. Create a new environment variable named GH_TOKEN with your newly generated token as its value, then

GH_EMAIL (your email address) and GH_NAME (your GitHub username).
5. Create a .travis.yml on the root of your repository with the following:

.travis.yml
Copy

Now, whenever a new commit lands in master, Travis CI will run your suite of tests and if everything passes, your
website will be deployed via the yarn deploy script.

Using Azure Pipelines#

1. Sign Up at Azure Pipelines if you haven't already.
2. Create an organization and within the organization create a project and connect your repository from GitHub.
3. Go to https://github.com/settings/tokens and generate a new personal access token with the repo scope.
4. In the project page (which looks like https://dev.azure.com/ORG_NAME/REPO_NAME/_build create a new

pipeline with the following text. Also, click on edit and add a new environment variable named GH_TOKEN with
your newly generated token as its value, then GH_EMAIL (your email address) and GH_NAME (your GitHub
username). Make sure to mark them as secret. Alternatively, you can also add a file named azure-
pipelines.yml at your repository root.

azure-pipelines.yml
Copy

Using Drone#

1. Create a new ssh key that will be the deploy key for your project.
2. Name your private and public keys to be specific and so that it does not overwrite your other ssh keys.
3. Go to https://github.com/USERNAME/REPO/settings/keys and add a new deploy key by pasting in our

public key you just generated.
4. Open your Drone.io dashboard and login. The URL looks like https://cloud.drone.io/USERNAME/REPO.
5. Click on the repository, click on activate repository, and add a secret called git_deploy_private_key with

your private key value that you just generated.
6. Create a .drone.yml on the root of your repository with below text.

Copy

Now, whenever you push a new tag to github, this trigger will start the drone ci job to publish your website.

Deploying to Netlify#

To deploy your Docusaurus 2 sites to Netlify, first make sure the following options are properly configured:

docusaurus.config.js
C

https://travis-ci.com/
https://github.com/settings/tokens
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://github.com/marketplace/travis-ci
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://github.com/settings/tokens
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://docs.github.com/en/free-pro-team@latest/developers/overview/managing-deploy-keys#deploy-keys
https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://www.netlify.com/

Copy

Then, create your site with Netlify.

While you set up the site, specify the build commands and directories as follows:
build command: npm run build
build directory: build

If you did not configure these build options, you may still go to "Site settings" -> "Build and deploy" after your site
is created.

Once properly configured with the above options, your site should deploy and automatically redeploy upon merging
to your deploy branch, which defaults to master.

important

Make sure to disable Netlify setting Pretty URLs to prevent lowercased URLs, unnecessary redirects and 404 errors.

Deploying to Vercel#

Deploying your Docusaurus project to Vercel will provide you with various benefits in the areas of performance and
ease of use.

To deploy your Docusaurus project with a Vercel for Git Integration, make sure it has been pushed to a Git
repository.

Import the project into Vercel using the Import Flow. During the import, you will find all relevant options
preconfigured for you; however, you can choose to change any of these options, a list of which can be found here.

After your project has been imported, all subsequent pushes to branches will generate Preview Deployments, and all
changes made to the Production Branch (commonly "main") will result in a Production Deployment.

Deploying to Render#

Render offers free static site hosting with fully managed SSL, custom domains, a global CDN and continuous auto-
deploy from your Git repo. Get started in just a few minutes by following Render's guide to deploying Docusaurus.

Deploying to Qovery#

Qovery is a fully-managed cloud platform that runs on your AWS, GCP, Azure and Digital Ocean account where you
can host static sites, backend APIs, databases, cron jobs, and all your other apps in one place.

1. Create a Qovery account.

Visit the Qovery dashboard to create an account if you don't already have one.

2. Create a project

Click on "Create a new project" and give a name to your project.

Click on "Next".

3. Add an application

https://app.netlify.com/start
https://vercel.com/
https://vercel.com/
https://vercel.com/docs/git-integrations
https://vercel.com/import/git
https://vercel.com/docs/build-step#build-&-development-settings
https://vercel.com/docs/platform/deployments#preview
https://vercel.com/docs/git-integrations#production-branch
https://vercel.com/docs/platform/deployments#production
https://render.com/
https://render.com/docs/static-sites
https://render.com/docs/deploy-docusaurus
https://qovery.com/
https://console.qovery.com/

Click on "Create an application" then choose "I have an application" and select your GitHub or GitLab repository
where your app is located.

Click on "Next".

Skip adding services

4. Deploy

Click on "Deploy".

You can see the status in real time by clicking on deployment logs.

Deploying to Hostman#

Hostman allows you to host static websites for free. Hostman automates everything, you just need to connect your
repository and follow easy steps:

1. Create a service

To deploy a Docusaurus static website, click Create in the top-left corner of your Dashboard and choose Front-end
app or static website.

2. Select the project to deploy

If you are logged in to Hostman with your GitHub, GitLab or Bitbucket account, at this point you will see the
repository with your projects, including the private ones.

Choose the project you want to deploy. It must contain the directory with the project’s files (usually it is website or
my-website).

To access a different repository, click Connect another repository.

If you didn’t use your Git account credentials to log in, you’ll be able to access the necessary account now, and then
select the project.

3. Configure the build settings Next, the Website customization window will appear.

Choose the Static website option from the list of frameworks.

The Directory with app points at the directory that will contain the project's files after the build. You can leave it
empty if during Step 2 you selected the repository with the contents of the website (or my_website) directory.

The standard build command for Docusaurus will be:

Copy

You can modify the build command if needed. You can enter multiple commands separated by &&.

4. Deploy Click Deploy to start the build process.

Once it starts, you will enter the deployment log. If there are any issues with the code, you will get warning or error
messages in the log, specifying the cause of the problem.

Usually the log contains all the debugging data you'll need, but we are also here to help you solve the issues, so do
not hesitate to contact us via chat.

https://hostman.com/
https://dashboard.hostman.com/

When the deployment is complete, you will receive an e-mail notification and also see a log entry.

All done!

Your project is up and ready.

Deploying to Surge#

Surge is a static web hosting platform, it is used to deploy your Docusaurus project from the command line in a
minute. Deploying your project to Surge is easy and it is also free (including a custom domain and SSL).

Deploy your app in a matter of seconds using surge with the following steps:

1. First, install Surge using npm by running the following command:

Copy

2. To build the static files of your site for production in the root directory of your project, run:

Copy

3. Then, run this command inside the root directory of your project:

Copy

First-time users of Surge would be prompted to create an account from the command line(happens only once).

Confirm that the site you want to publish is in the build directory, a randomly generated subdomain *.surge.sh
subdomain is always given (which can be edited).

Using your domain#

If you have a domain name you can deploy your site using surge to your domain using the command:

Copy

Your site is now deployed for free at subdomain.surge.sh or yourdomain.com depending on the method you chose.

Setting up CNAME file#

Store your domain in a CNAME file for future deployments with the following command:

Copy

You can deploy any other changes in the future with the command surge.

Deploying to QuantCDN#
1. Install Quant CLI

2. Create a QuantCDN account by signing up

3. Initialize your project with quant init and fill in your credentials:

https://surge.sh/help/getting-started-with-surge
https://docs.quantcdn.io/docs/cli/get-started
https://dashboard.quantcdn.io/register

Copy

4. Deploy your site

Copy

See docs and blog for more examples and use cases for deploying to QuantCDN.

Version: 2.0.0-beta.0

i18n - Introduction

It is easy to translate a Docusaurus website with its internationalization (i18n) support.

Goals#

It is important to understand the design decisions behind the Docusaurus i18n support.

For more context, you can read the initial RFC and PR.

i18n goals#

The goals of the Docusaurus i18n system are:

Simple: just put the translated files in the correct filesystem location
Flexible translation workflows: use Git (monorepo, forks, or submodules), SaaS software, FTP
Flexible deployment options: single, multiple domains, or hybrid
Modular: allow plugin authors to provide i18n support
Low-overhead runtime: documentation is mostly static and does not require a heavy JS library or polyfills
Scalable build-times: allow building and deploying localized sites independently
Localize assets: an image of your site might contain text that should be translated
No coupling: not forced to use any SaaS, yet integrations are possible
Easy to use with Crowdin: multiple Docusaurus v1 sites use Crowdin, and should be able to migrate to v2
Good SEO defaults: we set useful SEO headers like hreflang for you
RTL support: locales reading right-to-left (Arabic, Hebrew, etc.) are supported and easy to implement
Default translations: classic theme labels are translated for you in many languages

i18n non-goals#

We don't provide support for:

Automatic locale detection: opinionated, and best done on the server
Translation SaaS software: you are responsible to understand the external tools of your choice
Translation of slugs: technically complicated, little SEO value

Translation workflow#

Overview#

Overview of the workflow to create a translated Docusaurus website:

1. Configure: declare the default locale and alternative locales in docusaurus.config.js

https://docs.quantcdn.io/docs/cli/continuous-integration
https://www.quantcdn.io/blog
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://github.com/facebook/docusaurus/issues/3317
https://github.com/facebook/docusaurus/pull/3325
https://crowdin.com/
https://developers.google.com/search/docs/advanced/crawling/localized-versions
https://github.com/facebook/docusaurus/tree/master/packages/docusaurus-theme-classic/codeTranslations
https://zowe-docs.netlify.app/docs/deployment

2. Translate: put the translation files at the correct filesystem location
3. Deploy: build and deploy your site using a single or multi-domain strategy

Translation files#

You will have to work with 2 kind of translation files.

Markdown files#
This is the main content of your Docusaurus website.

Markdown and MDX documents are translated as a whole, to fully preserve the translation context, instead of
splitting each sentence as a separate string.

JSON files#

JSON is used to translate:

your React code: using the <Translate> component
your theme: the navbar, footer
your plugins: the docs sidebar category labels

The JSON format used is called Chrome i18n:

Copy

The choice was made for 2 reasons:

Description attribute: to help translators with additional context
Widely supported: Chrome extensions, Crowdin, Transifex, Phrase, Applanga

Translation files location#

The translation files should be created at the correct filesystem location.

Each locale and plugin has its own i18n subfolder:

Copy

note

For multi-instance plugins, the path is website/i18n/<locale>/<pluginName>-<pluginId>/....

Translating a very simple Docusaurus site in French would lead to the following tree:

Copy

The JSON files are initialized with the docusaurus write-translations CLI command.

The code.json file is extracted from React components using the <Translate> API.

info

Notice that the docusaurus-plugin-content-docs plugin has a current subfolder and a current.json file, useful
for the docs versioning feature

https://developer.chrome.com/docs/extensions/mv2/i18n-messages/
https://support.crowdin.com/file-formats/chrome-json/
https://docs.transifex.com/formats/chrome-json
https://help.phrase.com/help/chrome-json-messages
https://www.applanga.com/docs/formats/chrome_i18n_json
https://zowe-docs.netlify.app/docs/cli#docusaurus-write-translations

for the docs versioning feature.

Each content plugin or theme is different, and define its own translation files location:

Docs i18n
Blog i18n
Pages i18n
Themes i18n

Version: 2.0.0-beta.0

i18n - Tutorial

This tutorial will walk you through the basis of the Docusaurus i18n system.

We will add French translations to a newly initialized English Docusaurus website.

Initialize a new site with npx @docusaurus/init@latest init website classic (like this one).

Configure your site#

Modify docusaurus.config.js to add the i18n support for the French language.

Site configuration#

Use the site i18n configuration to declare the i18n locales:

docusaurus.config.js
Copy

Theme configuration#

Add a navbar item of type localeDropdown so that users can select the locale they want:

docusaurus.config.js
Copy

Start your site#

Start your localized site in dev mode, using the locale of your choice:

npm
Yarn

Copy

Your site is accessible at http://localhost:3000/fr/.

We haven't provided any translation, and the site is mostly untranslated.

tip

Docusaurus provides default translations for generic theme labels, such as "Next" and "Previous" for the
pagination

https://zowe-docs.netlify.app/docs/api/plugins/@docusaurus/plugin-content-docs#i18n
https://zowe-docs.netlify.app/docs/api/plugins/@docusaurus/plugin-content-blog#i18n
https://zowe-docs.netlify.app/docs/api/plugins/@docusaurus/plugin-content-pages#i18n
https://zowe-docs.netlify.app/docs/api/themes/configuration#i18n
https://github.com/facebook/docusaurus/tree/master/examples/classic
https://zowe-docs.netlify.app/docs/docusaurus.config.js#i18n

pagination.

Please help us complete those default translations.

caution

Each locale is a distinct standalone single-page-application: it is not possible to start the Docusaurus sites in all
locales at the same time.

Translate your site#
The French translations will be added in website/i18n/fr.

Docusaurus is modular, and each content plugin has its own subfolder.

note

After copying files around, restart your site with npm run start -- --locale fr.

Hot-reload will work better when editing existing files.

Use the translation APIs#

Open the homepage, and use the translation APIs:

src/pages/index.js
Copy

caution

Docusaurus provides a very small and lightweight translation runtime on purpose, and only supports basic
placeholders interpolation, using a subset of the ICU Message Format.

Most documentation websites are generally static and don't need advanced i18n features (plurals, genders, etc.).
Use a library like react-intl for more advanced use-cases.

Translate JSON files#

JSON translation files are used for everything that is not contained in a Markdown document:

React/JSX code
Layout navbar and footer labels
Docs sidebar category labels
...

Run the write-translations command:

npm
Yarn

Copy

It will extract and initialize the JSON translation files that you need to translate.

The homepage translations are statically extracted from React source code:

https://github.com/facebook/docusaurus/tree/master/packages/docusaurus-theme-classic/codeTranslations
https://zowe-docs.netlify.app/docs/docusaurus-core#translate
https://zowe-docs.netlify.app/docs/docusaurus-core#interpolate
https://formatjs.io/docs/core-concepts/icu-syntax/
https://www.npmjs.com/package/react-intl
https://zowe-docs.netlify.app/docs/cli#docusaurus-write-translations-sitedir

The homepage translations are statically extracted from React source code:

i18n/fr/code.json
Copy

Plugins and themes will also write their own JSON translation files, such as:

i18n/fr/docusaurus-theme-classic/navbar.json

Copy

Translate the message attribute in the JSON files of i18n/fr, and your site layout and homepage should now be
translated.

Translate Markdown files#

Official Docusaurus content plugins extensively use Markdown/MDX files, and allow you to translate them.

Translate the docs#

Copy your docs Markdown files to i18n/fr/docusaurus-plugin-content-docs/current, and translate them:

Copy

info

current is needed for the docs versioning feature: each docs version has its own subfolder.

Translate the blog#

Copy your blog Markdown files to i18n/fr/docusaurus-plugin-content-blog, and translate them:

Copy

Translate the pages#

Copy your pages Markdown files to i18n/fr/docusaurus-plugin-content-pages, and translate them:

Copy

caution

We only copy .md and .mdx files, as pages React components are translated through JSON translation files already.

Use explicit heading ids#

By default, a Markdown heading ### Hello World will have a generated id hello-world.

Other documents can target it with [link](#hello-world).

The translated heading becomes ### Bonjour le Monde, with id bonjour-le-monde.

Generated ids are not always a good fit for localized sites, as it requires you to localize all the anchor links:

Copy

tip

For localized sites, it is recommended to use explicit heading ids.

Deploy your site#
You can choose to deploy your site under a single domain, or use multiple (sub)domains.

Single-domain deployment#

Run the following command:

npm
Yarn

Copy

Docusaurus will build one single-page application per locale:

website/build: for the default, English language
website/build/fr: for the French language

You can now deploy the build folder to the static hosting solution of your choice.

note

The Docusaurus v2 website use this strategy:

https://docusaurus.io
https://docusaurus.io/fr

tip

Static hosting providers generally redirect /unknown/urls to /404.html by convention, always showing an English
404 page.

Localize your 404 pages by configuring your host to redirect /fr/* to /fr/404.html.

This is not always possible, and depends on your host: GitHub Pages can't do this, Netlify can.

Multi-domain deployment#

You can also build your site for a single locale:

npm
Yarn

Copy

Docusaurus will not add the /fr/ URL prefix

https://zowe-docs.netlify.app/docs/markdown-features/headings#explicit-ids
https://zowe-docs.netlify.app/docs/deployment
https://docusaurus.io/
https://docusaurus.io/fr
https://docs.netlify.com/routing/redirects/redirect-options/#custom-404-page-handling

Docusaurus will not add the /fr/ URL prefix.

On your static hosting provider:

create one deployment per locale
configure the appropriate build command, using the --locale option
configure the (sub)domain of your choice for each deployment

caution

This strategy is not possible with Github Pages, as it is only possible to have a single deployment.

Hybrid#

It is possible to have some locales using sub-paths, and others using subdomains.

It is also possible to deploy each locale as a separate subdomain, assemble the subdomains in a single unified domain
at the CDN level:

Deploy your site as fr.docusaurus.io
Configure a CDN to serve it from docusaurus.io/fr

Version: 2.0.0-beta.0

i18n - Using git

A possible translation strategy is to version control the translation files to Git (or any other VCS).

Tradeoffs#

This strategy has advantages:

Easy to get started: just add the i18n folder to Git
Easy for developers: Git, GitHub and pull requests are mainstream developer tools
Free (or without any additional cost, assuming you already use Git)
Low friction: does not require signing-up to an external tool
Rewarding: contributors are happy to have a nice contribution history

Using Git also present some shortcomings:

Hard for non-developers: they do not master Git and pull-requests
Hard for professional translations: they are used to SaaS translation softwares and advanced features
Hard to maintain: you have to keep the translated files in sync with the untranslated files

note

Some large-scale technical projects (React, Vue.js, MDN, TypeScript, Nuxt.js, etc.) use Git for translations.

Refer to the Docusaurus i18n RFC for our notes and links studying these systems.

Git tutorial#

This is a walk through of using Git to translate a newly initialized English Docusaurus website into French and

https://zowe-docs.netlify.app/docs/deployment
https://en.wikipedia.org/wiki/Version_control
https://github.com/facebook/docusaurus/issues/3317

This is a walk-through of using Git to translate a newly initialized English Docusaurus website into French, and
assume you already followed the i18n tutorial.

Prepare the Docusaurus site#

Initialize a new Docusaurus site:

Copy

Add the site configuration for the French language:

docusaurus.config.js
Copy

Translate the homepage:

src/pages/index.js
Copy

Initialize the i18n folder#

Use the write-translations CLI command to initialize the JSON translation files for the French locale:
npm
Yarn

Copy

tip

Use the --messagePrefix '(fr) ' option to make the untranslated strings stand out.

Hello will appear as (fr) Hello and makes it clear a translation is missing.

Copy your untranslated Markdown files to the French folder:

Copy

Add all these files to Git.

Translate the files#

Translate the Markdown and JSON files in i18n/fr and commit the translation.

You should now be able to start your site in French and see the translations:

npm
Yarn

Copy

You can also build the site locally or on your CI:

npm
Yarn

https://zowe-docs.netlify.app/docs/i18n/tutorial
https://zowe-docs.netlify.app/docs/cli#docusaurus-write-translations

Copy

Repeat#

Follow the same process for each locale you need to support.

Maintain the translations#

Keeping translated files consistent with the originals can be challenging, in particular for Markdown documents.

Markdown translations#

When an untranslated Markdown document is edited, it is your responsibility to maintain the respective
translated files, and we unfortunately don't have a good way to help you do so.

To keep your translated sites consistent, when the website/docs/doc1.md doc is edited, you need backport these
edits to i18n/fr/docusaurus-plugin-content-docs/current/doc1.md.

JSON translations#

To help you maintain the JSON translation files, it is possible to run again the write-translations CLI command:

npm
Yarn

Copy

New translation will be appended, and existing ones will not be overridden.

tip

Reset your translations with the --override option.

Localize edit urls#

When the user is browsing a page at /fr/doc1, the edit button will link by default to the unlocalized doc at
website/docs/doc1.md.

Your translations are on Git, and you can use the editLocalizedFiles: true option of the docs and blog plugins.

The edit button will link to the localized doc at i18n/fr/docusaurus-plugin-content-docs/current/doc1.md.

Version: 2.0.0-beta.0

i18n - Using Crowdin

The i18n system of Docusaurus is decoupled from any translation software.

You can integrate Docusaurus with the tools and SaaS of your choice, as long as you put the translation files at the
correct location.

We document the usage of Crowdin, as one possible integration example.

https://zowe-docs.netlify.app/docs/cli#docusaurus-write-translations
https://crowdin.com/

g , p g p

caution

This is not an endorsement of Crowdin as the unique choice to translate a Docusaurus site, but it is successfully
used by Facebook to translate documentation projects such as Jest, Docusaurus and ReasonML.

Refer to the Crowdin documentation and Crowdin support for help.

tip

Use this community-driven GitHub issue to discuss anything related to Docusaurus + Crowdin.

Crowdin overview#

Crowdin is a translation SaaS, offering a free plan for open-source projects.

We recommend the following translation workflow:

Upload sources to Crowdin (untranslated files)
Use Crowdin to translate the content
Download translations from Crowdin (localized translation files)

Crowdin provides a CLI to upload sources and download translations, allowing you to automate the translation
process.

The crowdin.yml configuration file is convenient for Docusaurus, and permits to download the localized
translation files at the expected location (in i18n/<locale>/..).

Read the official documentation to know more about advanced features and different translation workflows.

Crowdin tutorial#

This is a walk-through of using Crowdin to translate a newly initialized English Docusaurus website into French, and
assume you already followed the i18n tutorial.

The end result can be seen at docusaurus-crowdin-example.netlify.app (repository).

Prepare the Docusaurus site#

Initialize a new Docusaurus site:

Copy

Add the site configuration for the French language:

docusaurus.config.js
Copy

Translate the homepage:

src/pages/index.js
Copy

C C di j #

https://crowdin.com/
https://jestjs.io/
https://docusaurus.io/
https://reasonml.github.io/
https://support.crowdin.com/
mailto:support@crowdin.com
https://github.com/facebook/docusaurus/discussions/4052
https://crowdin.com/page/open-source-project-setup-request
https://support.crowdin.com/cli-tool/
https://support.crowdin.com/configuration-file/
https://support.crowdin.com/
https://zowe-docs.netlify.app/docs/i18n/tutorial
https://docusaurus-crowdin-example.netlify.app/
https://github.com/slorber/docusaurus-crowdin-example

Create a Crowdin project#

Sign up on Crowdin, and create a project.

Use English as source language, and French as target language.

Your project is created, but it is empty for now. We will upload the files to translate in the next steps.

Create the Crowdin configuration#

This configuration (doc) provides a mapping for the Crowdin CLI to understand:

Where to find the source files to upload (JSON and Markdown)
Where to download the files after translation (in i18n/<locale>)

Create crowdin.yml in website:

crowdin.yml
Copy

Crowdin has its own syntax for declaring source/translation paths:

**/*: everything in a subfolder
%two_letters_code%: the 2-letters variant of Crowdin target languages (fr in our case)
**/%original_file_name%: the translations will preserve the original folder/file hierarchy

info

The Crowdin CLI warnings are not always easy to understand.

We advise to:

change one thing at a time
re-upload sources after any configuration change
use paths starting with / (./ does not work)
avoid fancy globbing patterns like /docs/**/*.(md|mdx) (does not work)

Access token#

The api_token_env attribute defines the env variable name read by the Crowdin CLI.

You can obtain a Personal Access Token on your personal profile page.

tip

You can keep the default value CROWDIN_PERSONAL_TOKEN, and set this environment variable and on your computer
and on the CI server to the generated access token.

caution

A Personal Access Tokens grant read-write access to all your Crowdin projects.

You should not commit it and it may be a good idea to create a dedicated Crowdin profile for your company

https://crowdin.com/
https://support.crowdin.com/configuration-file/
https://crowdin.com/settings#api-key

You should not commit it, and it may be a good idea to create a dedicated Crowdin profile for your company
instead of using a personal account.

Other configuration fields#

project_id: can be hardcoded, and is found on
https://crowdin.com/project/<MY_PROJECT_NAME>/settings#api
preserve_hierarchy: preserve the folder's hierarchy of your docs on Crowdin UI instead of flattening
everything

Install the Crowdin CLI#

This tutorial use the CLI in version 3.5.2, but we expect 3.x releases to keep working.

Install the Crowdin CLI as a NPM package to your Docusaurus site:

npm
Yarn

Copy

Add a crowdin script:

package.json
Copy

Test that you can run the Crowdin CLI:

npm
Yarn

Copy

Set the CROWDIN_PERSONAL_TOKEN env variable on your computer, to allow the CLI to authenticate with the Crowdin
API.

tip

Temporarily, you can hardcode your personal token in crowdin.yml with api_token: 'MY-TOKEN'.

Upload the sources#

Generate the JSON translation files for the default language in website/i18n/en:

npm
Yarn

Copy

Upload all the JSON and Markdown translation files:

npm
Yarn

Copy

Copy

Your source files are now visible on the Crowdin interface:
https://crowdin.com/project/<MY_PROJECT_NAME>/settings#files

Translate the sources#

On https://crowdin.com/project/<MY_PROJECT_NAME>, click on the French target language.

Translate some Markdown files.

tip

Use Hide String to make sure translators don't translate things that should not be:

Frontmatter: id, slug, tags ...
Admonitions: :::, :::note, :::tip ...

Translate some JSON files.

info

The description attribute of JSON translation files is visible on Crowdin to help translate the strings.

tip

Pre-translate your site, and fix pre-translation mistakes manually (enable the Global Translation Memory in
settings first).

Use the Hide String feature first, as Crowdin is pre-translating things too optimistically.

Download the translations#

Use the Crowdin CLI to download the translated JSON and Markdown files.

npm
Yarn

Copy

The translated content should be downloaded in i18n/fr.

Start your site on the French locale:

npm
Yarn

Copy

https://support.crowdin.com/pre-translation-via-machine/

Make sure that your website is now translated in French at http://localhost:3000/fr/.

Automate with CI#

We will configure the CI to download the Crowdin translations at build time, and keep them outside of Git.

Add website/i18n to .gitignore.

Set the CROWDIN_PERSONAL_TOKEN env variable on your CI.

Create a npm script to sync Crowdin (extract sources, upload sources, download translations):

package.json
Copy

Call the npm run crowdin:sync script in your CI, just before building the Docusaurus site.

tip

Keep your deploy-previews fast: don't download translations, and use npm run build -- --locale en for feature
branches.

caution

Crowdin does not support well multiple concurrent uploads/downloads: it is preferable to only include translations to
your production deployment, and keep deploy previews untranslated.

Advanced Crowdin topics#

MDX#

caution

Pay special attention to the JSX fragments in MDX documents!

Crowdin does not support officially MDX, but they added support for the .mdx extension, and interpret such files
as Markdown (instead of plain text).

MDX problems#

Crowdin thinks the JSX syntax is embedded HTML, and can mess-up with the JSX markup when you download the
translations, leading to a site that fails to build due to invalid JSX.

Simple JSX fragments using simple string props like <Username name="Sebastien"/> will work fine.

More complex JSX fragments using object/array props like <User person={{name: "Sebastien"}}/> are more
likely to fail due to a syntax that does not look like HTML.

MDX solutions#

d i h l b dd d d d l

We recommend moving the complex embedded JSX code as separate standalone components.

We also added a mdx-code-block escape hatch syntax:

Copy

This will:

be interpreted by Crowdin as code blocks (and not mess-up with the markup on download)
be interpreted by Docusaurus as regular JSX (as if it was not wrapped by any code block)
unfortunately opt-out of MDX tooling (IDE syntax highlighting, Prettier...)

Docs versioning#

Configure translation files for the website/versioned_docs folder.

When creating a new version, the source strings will generally be quite similar to the current version
(website/docs), and you don't want to translate the new version docs again and again.

Crowdin provides a Duplicate Strings setting.

We recommend using Hide, but the ideal setting depends on how much your versions are different.

caution

Not using Hide leads to a much larger amount of source strings in quotas, and will affect the pricing.

Multi-instance plugins#

You need to configure translation files for each plugin instance.

If you have a docs plugin instance with id=ios, you will need to configure those source files as well

website/ios
website/ios_versioned_docs (if versioned)

Maintaining your site#

Sometimes, you will remove or rename a source file on Git, and Crowdin will display CLI warnings:

When your sources are refactored, you should use the Crowdin UI to update your Crowdin files manually:

VCS (Git) integrations#

Crowdin has multiple VCS integrations for GitHub, GitLab, Bitbucket.

warning

We recommend avoiding them.

It could have been helpful to be able to edit the translations in both Git and Crowdin, and have a bi-directional sync
between the 2 systems

https://support.crowdin.com/github-integration/

between the 2 systems.

In practice, it didn't work very reliably for a few reasons:

The Crowdin -> Git sync works fine (with a pull request)
The Git -> Crowdin sync is manual (you have to press a button)
The heuristics used by Crowdin to match existing Markdown translations to existing Markdown sources are
not 100% reliable, and you have to verify the result on Crowdin UI after any sync from Git
2 users concurrently editing on Git and Crowdin can lead to a translation loss
It requires the crowdin.yml file to be at the root of the repository

In-Context localization#

Crowdin has an In-Context localization feature.

caution

Unfortunately, it does not work yet for technical reasons, but we have good hope it can be solved.

Crowdin replaces markdown strings with technical ids such as crowdin:id12345, but it does so too aggressively,
including hidden strings, and mess-up with the frontmatter, admonitions, jsx...

Localize edit urls#

When the user is browsing a page at /fr/doc1, the edit button will link by default to the unlocalized doc at
website/docs/doc1.md.

You may prefer the edit button to link to the Crowdin interface instead, and can use the editUrl function to
customize the edit urls on a per-locale basis.

docusaurus.config.js
Copy

note

It is currently not possible to link to a specific file in Crowdin.

Example configuration#

The Docusaurus v2 configuration file is a good example of using versioning and multi-instance:

crowdin.yml
Copy

Version: 2.0.0-beta.0

Plugins

Plugins are the building blocks of features in a Docusaurus 2 site. Each plugin handles its own individual feature.
Plugins may work and be distributed as part of bundle via presets.

Available plugins#

We maintain a list of official plugins but the community has also created some unofficial plugins

https://support.crowdin.com/in-context-localization/
https://zowe-docs.netlify.app/docs/presets
https://zowe-docs.netlify.app/docs/api/plugins
https://zowe-docs.netlify.app/community/resources#community-plugins

We maintain a list of official plugins, but the community has also created some unofficial plugins.

Installing a plugin#
A plugin is usually a npm package, so you install them like other npm packages using npm.

npm
Yarn

Copy

Then you add it in your site's docusaurus.config.js's plugins option:

docusaurus.config.js
Copy

Docusaurus can also load plugins from your local directory, you can do something like the following:

docusaurus.config.js
Copy

Configuring plugins#

For the most basic usage of plugins, you can provide just the plugin name or the absolute path to the plugin.

However, plugins can have options specified by wrapping the name and an options object in an array inside your
config. This style is usually called Babel Style.

docusaurus.config.js
Copy

Example:

docusaurus.config.js
Copy

Multi-instance plugins and plugin ids#

All Docusaurus content plugins can support multiple plugin instances.

The Docs plugin has additional multi-instance documentation

It is required to assign a unique id to each plugin instance.
By default, the plugin id is default.

docusaurus.config.js
Copy

note

At most one plugin instance can be the "default plugin instance", by omitting the id attribute, or using id:
'default'.

i i #

https://zowe-docs.netlify.app/docs/api/plugins
https://zowe-docs.netlify.app/community/resources#community-plugins
https://zowe-docs.netlify.app/docs/docs-multi-instance

Plugins design#

Docusaurus' implementation of the plugins system provides us with a convenient way to hook into the website's
lifecycle to modify what goes on during development/build, which involves (but not limited to) extending the
webpack config, modifying the data being loaded and creating new components to be used in a page.

Creating plugins#

A plugin is a module which exports a function that takes two parameters and returns an object when executed.

Module definition#

The exported modules for plugins are called with two parameters: context and options and returns a JavaScript
object with defining the lifecycle APIs.

For example if you have a reference to a local folder such as this in your docusaurus.config.js:

docusaurus.config.js
Copy

Then in the folder my-plugin you can create an index.js such as this

index.js
Copy

The my-plugin folder could also be a fully fledged package with it's own package.json and a src/index.js file for
example

context#

context is plugin-agnostic and the same object will be passed into all plugins used for a Docusaurus website. The
context object contains the following fields:

Copy

options#

options are the second optional parameter when the plugins are used. options are plugin-specific and are specified
by users when they use them in docusaurus.config.js. Alternatively, if preset contains the plugin, the preset will
then be in charge of passing the correct options into the plugin. It is up to individual plugin to define what options it
takes.

Return value#

The returned object value should implement the lifecycle APIs.

Version: 2.0.0-beta.0

Themes

Like plugins, themes are designed to add functionality to your Docusaurus site. As a good rule of thumb, themes are
mostly focused on client-side, where plugins are more focused on server-side functionalities. Themes are also
d i d b l bl i h h h

https://zowe-docs.netlify.app/docs/lifecycle-apis
https://zowe-docs.netlify.app/docs/using-plugins#configuring-plugins
https://zowe-docs.netlify.app/docs/lifecycle-apis

designed to be replace-able with other themes.

Available themes#

We maintain a list of official themes.

Using themes#

To use themes, specify the themes in your docusaurus.config.js. You may use multiple themes:

docusaurus.config.js
Copy

Theme components#

Most of the time, theme is used to provide a set of React components, e.g. Navbar, Layout, Footer.

Users can use these components in their code by importing them using the @theme webpack alias:

Copy

The alias @theme can refer to a few directories, in the following priority:

1. A user's website/src/theme directory, which is a special directory that has the higher precedence.
2. A Docusaurus theme packages's theme directory.
3. Fallback components provided by Docusaurus core (usually not needed).

Given the following structure

Copy

website/src/theme/Navbar.js takes precedence whenever @theme/Navbar is imported. This behavior is called
component swizzling. In iOS, method swizzling is the process of changing the implementation of an existing selector
(method). In the context of a website, component swizzling means providing an alternative component that takes
precedence over the component provided by the theme.

Themes are for providing UI components to present the content. Most content plugins need to be paired with a
theme in order to be actually useful. The UI is a separate layer from the data schema, so it makes it easy to swap out
the themes for other designs (i.e., Bootstrap).

For example, a Docusaurus blog consists of a blog plugin and a blog theme.

docusaurus.config.js
Copy

And if you want to use Bootstrap styling, you can swap out the theme with theme-blog-bootstrap (fictitious non-
existing theme):

docusaurus.config.js
Copy

Wrapping your site with <Root>#

https://zowe-docs.netlify.app/docs/api/themes

Wrapping your site with <Root>#

A <Root> theme component is rendered at the very top of your Docusaurus site.

It allows you to wrap your site with additional logic, by creating a file at src/theme/Root.js:

website/src/theme/Root.js
Copy

This component is applied above the router and the theme <Layout>, and will never unmount.

tip

Use this component to render React Context providers and global stateful logic.

Swizzling theme components#

caution

We discourage swizzling of components during the Docusaurus 2 beta phase. The theme components APIs are likely
to evolve and have breaking changes. If possible, stick with the default appearance for now.

Docusaurus Themes' components are designed to be replaceable. To make it easier for you, we created a command
for you to replace theme components called swizzle.

To swizzle a component for a theme, run the following command in your doc site:

npm
Yarn

Copy

As an example, to swizzle the <Footer /> component in @docusaurus/theme-classic for your site, run:

npm
Yarn

Copy

This will copy the current <Footer /> component used by the theme to a src/theme/Footer directory under the
root of your site, which is where Docusaurus will look for swizzled components. Docusaurus will then use swizzled
component in place of the original one from the theme.

Although we highly discourage swizzling of all components, if you wish to do that, run:

npm
Yarn

Copy

Note: You need to restart your webpack dev server in order for Docusaurus to know about the new component.

Wrapping theme components#

i j i i h i h ddi i l l i d i b i h

Sometimes, you just want to wrap an existing theme component with additional logic, and it can be a pain to have to
maintain an almost duplicate copy of the original theme component.

In such case, you should swizzle the component you want to wrap, but import the original theme component in your
customized version to wrap it.

For site owners#

The @theme-original alias allows you to import the original theme component.

Here is an example to display some text just above the footer, with minimal code duplication.

src/theme/Footer.js
Copy

For plugin authors#

One theme can wrap a component from another theme, by importing the component from the initial theme, using the
@theme-init import.

Here's an example of using this feature to enhance the default theme CodeBlock component with a react-live
playground feature.

Copy

Check the code of docusaurus-theme-live-codeblock for details.

caution

Unless you want publish to npm a "theme enhancer" (like docusaurus-theme-live-codeblock), you likely don't
need @theme-init.

Themes design#

While themes share the exact same lifecycle methods with plugins, their implementations can look very different
from those of plugins based on themes' designed objectives.

Themes are designed to complete the build of your Docusaurus site and supply the components used by your site,
plugins, and the themes themselves. So a typical theme implementation would look like a src/index.js file that
hooks it up to the lifecycle methods. Most likely they would not use loadContent, which plugins would use. And it
is typically accompanied by a src/theme directory full of components.

To summarize:

Themes share the same lifecycle methods with Plugins
Themes are run after all existing Plugins
Themes exist to add component aliases by extending the webpack config

Writing customized Docusaurus themes#

A Docusaurus theme normally includes an index.js file where you hook up to the lifecycle methods, alongside with
a theme/ directory of components. A typical Docusaurus theme folder looks like this:

Copy

There are two lifecycle methods that are essential to theme implementation:

getThemePath()
getClientModules()

These lifecycle method are not essential but recommended:

validateThemeConfig({themeConfig, validate})
validateOptions({options, validate})

Version: 2.0.0-beta.0

Presets

Presets are collections of plugins and themes.

Using presets#

A preset is usually a npm package, so you install them like other npm packages using npm.

npm
Yarn

Copy

Then, add it in your site's docusaurus.config.js's presets option:

docusaurus.config.js
Copy

To load presets from your local directory, specify how to resolve them:

docusaurus.config.js
Copy

Presets -> themes and plugins#

Presets in some way are a shorthand function to add plugins and themes to your docusaurus config. For example, you
can specify a preset that includes the following themes and plugins,

Copy

then in your Docusaurus config, you may configure the preset instead:

docusaurus.config.js
Copy

This is equivalent of doing:

docusaurus.config.js
Copy

This is especially useful when some plugins and themes are intended to be used together.

https://zowe-docs.netlify.app/docs/lifecycle-apis#getthemepath
https://zowe-docs.netlify.app/docs/lifecycle-apis#getclientmodules
https://zowe-docs.netlify.app/docs/lifecycle-apis#validatethemeconfigthemeconfig-validate
https://zowe-docs.netlify.app/docs/lifecycle-apis#validateoptionsoptions-validate

Official presets#

@docusaurus/preset-classic#

The classic preset that is usually shipped by default to new docusaurus website. It is a set of plugins and themes.

Themes Plugins
@docusaurus/theme-classic @docusaurus/plugin-content-docs

@docusaurus/theme-search-algolia @docusaurus/plugin-content-blog

@docusaurus/plugin-content-pages

@docusaurus/plugin-debug

@docusaurus/plugin-google-analytics

@docusaurus/plugin-google-gtag

@docusaurus/plugin-sitemap

To specify plugin options individually, you can provide the necessary fields to certain plugins, i.e. customCss for
@docusaurus/theme-classic, pass them in the preset field, like this:

docusaurus.config.js
Copy

In addition to these plugins and themes, @docusaurus/theme-classic adds remark-admonitions as a remark
plugin to @docusaurus/plugin-content-blog and @docusaurus/plugin-content-docs.

The admonitions key will be passed as the options to remark-admonitions. Passing false will prevent the plugin
from being added to MDX.

docusaurus.config.js
Copy

@docusaurus/preset-bootstrap#

The classic preset that is usually shipped by default to new docusaurus website. It is a set of plugins and themes.

Themes Plugins
@docusaurus/theme-bootstrap @docusaurus/plugin-content-docs

@docusaurus/plugin-content-blog

@docusaurus/plugin-content-pages

@docusaurus/plugin-debug

To specify plugin options individually, you can provide the necessary fields to certain plugins, i.e. docs for
@docusaurus/theme-bootstrap, pass them in the preset field, like this:

docusaurus.config.js
Copy

caution

This preset is work in progress

V i 2 0 0 b t 0

https://github.com/elviswolcott/remark-admonitions
https://github.com/elviswolcott/remark-admonitions#options

Version: 2.0.0-beta.0

Migration overview

This doc guides you through migrating an existing Docusaurus 1 site to Docusaurus 2.

We try to make this as easy as possible, and provide a migration cli.

Main differences#

Docusaurus 1 is a pure documentation site generator, using React as a server-side template engine, but not loading
React on the browser.

Docusaurus 2 is rebuilt it from the ground up, generates a single-page-application, using the full power of React in
the browser. It allows for more customizability but preserved the best parts of Docusaurus 1 - easy to get started,
versioned docs, and i18n.

Beyond that, Docusaurus 2 is a performant static site generator and can be used to create common content-driven
websites (e.g. Documentation, Blogs, Product Landing and Marketing Pages, etc) extremely quickly.

While our main focus will still be helping you get your documentations right and well, it is possible to build any kind
of website using Docusaurus 2 as it is just a React application. Docusaurus can now be used to build any website,
not just documentation websites.

Docusaurus 1 structure#

Your Docusaurus 1 site should have the following structure:

Copy

Docusaurus 2 structure#

After the migration, your Docusaurus 2 site could look like:

Copy

info

This migration does not change the /docs folder location, but Docusaurus v2 sites generally have the /docs folder
inside /website

You are free to put the /docs folder anywhere you want after having migrated to v2.

Migration process#

There are multiple things to migrate to obtain a fully functional Docusaurus 2 website:

packages
cli commands
site configuration
markdown files

id b fil

sidebars file
pages, components and CSS
versioned docs
i18n support 🚧

Automated migration process#

The migration cli will handle many things of the migration for you.

However, some parts can't easily be automated, and you will have to fallback to the manual process.

note

We recommend running the migration cli, and complete the missing parts thanks to the manual migration process.

Manual migration process#

Some parts of the migration can't be automated (particularly the pages), and you will have to migrate them manually.

The manual migration guide will give you all the manual steps.

Support#

For any questions, you can ask in the #docusaurus-1-to-2-migration Discord channel.

Feel free to tag @slorber in any migration PRs if you would like us to have a look.

We also have volunteers willing to help you migrate your v1 site.

Example migration PRs#

You might want to refer to our migration PRs for Create React App and Flux as examples of how a migration for a
basic Docusaurus v1 site can be done.

Version: 2.0.0-beta.0

Automated migration

The migration CLI automatically migrates your v1 website to a v2 website.

info

Manual work is still required after using the migration CLI, as we can't automate a full migration

The migration CLI migrates:

Site configurations (from siteConfig.js to docusaurus.config.js)
package.json
sidebars.json
/docs
/blog

https://zowe-docs.netlify.app/docs/migration/automated
https://zowe-docs.netlify.app/docs/migration/manual
https://discordapp.com/invite/kYaNd6V
https://github.com/slorber
https://github.com/facebook/docusaurus/issues/1834
https://github.com/facebook/create-react-app/pull/7785
https://github.com/facebook/flux/pull/471

/static
versioned_sidebar.json and /versioned_docs if your site uses versioning

To use the migration CLI, follow these steps:

1. Before using the migration CLI, ensure that /docs, /blog, /static, sidebars.json, siteConfig.js,
package.json follow the structure shown at the start of this page.

2. To migrate your v1 website, run the migration CLI with the appropriate filesystem paths:

Copy

3. To view your new website locally, go into your v2 website's directory and start your development server.

Copy

danger

The migration CLI updates existing files. Be sure to have committed them first!

Options#

You can add option flags to the migration CLI to automatically migrate Markdown content and pages to v2. It is
likely that you will still need to make some manual changes to achieve your desired result.

Name Description
--mdx Add this flag to convert Markdown to MDX automatically
--page Add this flag to migrate pages automatically
Copy

danger

The migration of pages and MDX is still a work in progress.

We recommend you to try to run the pages without these options, commit, and then try to run the migration again
with the --page and --mdx options.

This way, you'd be able to easily inspect and fix the diff.

Version: 2.0.0-beta.0

Manual migration

This manual migration process should be run after the automated migration process, to complete the missing parts, or
debug issues in the migration CLI output.

Project setup#

package.json#

Scoped package names#

https://zowe-docs.netlify.app/docs/migration/automated

Scoped pac age a es#

In Docusaurus 2, we use scoped package names:

docusaurus -> @docusaurus/core

This provides a clear distinction between Docusaurus' official packages and community maintained packages. In
another words, all Docusaurus' official packages are namespaced under @docusaurus/.

Meanwhile, the default doc site functionalities provided by Docusaurus 1 are now provided by
@docusaurus/preset-classic. Therefore, we need to add this dependency as well:

package.json
Copy

tip

Please use the most recent Docusaurus 2 alpha version, which you can check out here (it's tagged next).

CLI commands#

Meanwhile, CLI commands are renamed to docusaurus <command> (instead of docusaurus-command).

The "scripts" section of your package.json should be updated as follows:

package.json
Copy

A typical Docusaurus 2 package.json may look like this:

package.json
Copy

Update references to the build directory#

In Docusaurus 1, all the build artifacts are located within website/build/<PROJECT_NAME>.

In Docusaurus 2, it is now moved to just website/build. Make sure that you update your deployment configuration
to read the generated files from the correct build directory.

If you are deploying to GitHub pages, make sure to run yarn deploy instead of yarn publish-gh-pages script.

.gitignore#

The .gitignore in your website should contain:

.gitignore
Copy

README#

The D1 website may have an existing README file. You can modify it to reflect the D2 changes, or copy the
default Docusaurus v2 README.

Site configurations#

https://www.npmjs.com/package/@docusaurus/core
https://github.com/facebook/docusaurus/blob/master/packages/docusaurus-init/templates/classic/README.md

Site configurations#

docusaurus.config.js#

Rename siteConfig.js to docusaurus.config.js.

In Docusaurus 2, we split each functionality (blog, docs, pages) into plugins for modularity. Presets are bundles of
plugins and for backward compatibility we built a @docusaurus/preset-classic preset which bundles most of the
essential plugins present in Docusaurus 1.

Add the following preset configuration to your docusaurus.config.js.

docusaurus.config.js
Copy

We recommend moving the docs folder into the website folder and that is also the default directory structure in v2.
Now supports Docusaurus project deployments out-of-the-box if the docs directory is within the website. It is also
generally better for the docs to be within the website so that the docs and the rest of the website code are co-located
within one website directory.

If you are migrating your Docusaurus v1 website, and there are pending documentation pull requests, you can
temporarily keep the /docs folder to its original place, to avoid producing conflicts.

Refer to migration guide below for each field in siteConfig.js.

Updated fields#

baseUrl, tagline, title, url, favicon, organizationName, projectName, githubHost, scripts, stylesheets#

No actions needed, these configuration fields were not modified.

colors#

Deprecated. We wrote a custom CSS framework for Docusaurus 2 called Infima which uses CSS variables for
theming. The docs are not quite ready yet and we will update here when it is. To overwrite Infima's CSS variables,
create your own CSS file (e.g. ./src/css/custom.css) and import it globally by passing it as an option to
@docusaurus/preset-classic:

docusaurus.config.js
Copy

Infima uses 7 shades of each color.

/src/css/custom.css
Copy

We recommend using ColorBox to find the different shades of colors for your chosen primary color.

Alteratively, use the following tool to generate the different shades for your website and copy the variables into
src/css/custom.css.

Primary Color: 3578e5

CSS Variable Name Hex Adjustment
if l i li ht t #80 f 30

https://zeit.co/now
https://github.com/zeit/now-examples/tree/master/docusaurus
https://infima.dev/
https://www.colorbox.io/

CSS Variable Name Hex Adjustment--ifm-color-primary-lightest #80aaef -30

--ifm-color-primary-lighter #5a91ea -15

--ifm-color-primary-light #4e89e8 -10
--ifm-color-primary #3578e5 0
--ifm-color-primary-dark #1d68e1 10

--ifm-color-primary-darker #1b62d4 15

--ifm-color-primary-darkest #1751af 30

Replace the variables in src/css/custom.css with these new variables.

Copy

footerIcon, copyright, ogImage, twitterImage, docsSideNavCollapsible#

Site meta info such as assets, SEO, copyright info are now handled by themes. To customize them, use the
themeConfig field in your docusaurus.config.js:

docusaurus.config.js
Copy

headerIcon, headerLinks#

In Docusaurus 1, header icon and header links were root fields in siteConfig:

siteConfig.js
Copy

Now, these two fields are both handled by the theme:

docusaurus.config.js
Copy

algolia#

docusaurus.config.js
Copy

blogSidebarCount#
Deprecated. Pass it as a blog option to @docusaurus/preset-classic instead:

docusaurus.config.js
Copy

cname#

Deprecated. Create a CNAME file in your static folder instead with your custom domain. Files in the static folder
will be copied into the root of the build folder during execution of the build command.

customDocsPath, docsUrl, editUrl, enableUpdateBy, enableUpdateTime#

BREAKING: editUrl should point to (website) Docusaurus project instead of docs directory.

NG: ed tU s ou d po t to (webs te) ocusau us p oject stead o docs d ecto y.

Deprecated. Pass it as an option to @docusaurus/preset-classic docs instead:

docusaurus.config.js
Copy

gaTrackingId#

docusaurus.config.js
Copy

gaGtag#

docusaurus.config.js
Copy

Removed fields#

The following fields are all deprecated, you may remove from your configuration file.

blogSidebarTitle
cleanUrl - Clean URL is used by default now.
defaultVersionShown - Versioning is not ported yet. You'd be unable to migration to Docusaurus 2 if you are
using versioning. Stay tuned.
disableHeaderTitle
disableTitleTagline
docsSideNavCollapsible is available at themeConfig.sidebarCollapsible, and this is turned on by default
now.
facebookAppId
facebookComments
facebookPixelId
fonts
highlight - We now use Prism instead of highlight.js.
markdownOptions - We use MDX in v2 instead of Remarkable. Your markdown options have to be converted
to Remark/Rehype plugins.
markdownPlugins - We use MDX in v2 instead of Remarkable. Your markdown plugins have to be converted
to Remark/Rehype plugins.
manifest
onPageNav - This is turned on by default now.
separateCss - It can imported in the same manner as custom.css mentioned above.
scrollToTop
scrollToTopOptions
translationRecruitingLink
twitter
twitterUsername
useEnglishUrl
users
usePrism - We now use Prism instead of highlight.js
wrapPagesHTML

We intend to implement many of the deprecated config fields as plugins in future. Help will be appreciated!

Urls#

https://prismjs.com/
https://highlightjs.org/
https://prismjs.com/
https://highlightjs.org/

In v1, all pages were available with or without the .html extension.

For example, these 2 pages exist:

https://v1.docusaurus.io/docs/en/installation
https://v1.docusaurus.io/docs/en/installation.html

If cleanUrl was:

true: links would target /installation
false: links would target /installation.html

In v2, by default, the canonical page is /installation, and not /installation.html.

If you had cleanUrl: false in v1, it's possible that people published links to /installation.html.

For SEO reasons, and avoiding breaking links, you should configure server-side redirect rules on your hosting
provider.

As an escape hatch, you could use @docusaurus/plugin-client-redirects to create client-side redirects from
/installation.html to /installation.

Copy

If you want to keep the .html extension as the canonical url of a page, docs can declare a slug:
installation.html frontmatter.

Components#

Sidebar#

In previous version, nested sidebar category is not allowed and sidebar category can only contain doc id. However,
v2 allows infinite nested sidebar and we have many types of Sidebar Item other than document.

You'll have to migrate your sidebar if it contains category type. Rename subcategory to category and ids to items.

sidebars.json
Copy

Footer#
website/core/Footer.js is no longer needed. If you want to modify the default footer provided by Docusaurus,
swizzle it:

npm
Yarn

Copy

This will copy the current <Footer /> component used by the theme to a src/theme/Footer directory under the
root of your site, you may then edit this component for customization.

Do not swizzle the Footer just to add the logo on the left. The logo is intentionally removed in v2 and moved to the
bottom. Just configure the footer in docusaurus.config.js with themeConfig.footer:

https://v1.docusaurus.io/docs/en/installation
https://v1.docusaurus.io/docs/en/installation.html
https://v1.docusaurus.io/docs/en/site-config#cleanurl-boolean
https://zowe-docs.netlify.app/docs/using-plugins#docusaurusplugin-client-redirects
https://zowe-docs.netlify.app/docs/sidebar#understanding-sidebar-items
https://zowe-docs.netlify.app/docs/using-themes#swizzling-theme-components

Copy

Pages#

Please refer to creating pages to learn how Docusaurus 2 pages work. After reading that, notice that you have to
move pages/en files in v1 to src/pages instead.

In Docusaurus v1, pages received the siteConfig object as props.

In Docusaurus v2, get the siteConfig object from useDocusaurusContext instead.

In v2, you have to apply the theme layout around each page. The Layout component takes metadata props.

CompLibrary is deprecated in v2, so you have to write your own React component or use Infima styles (Docs will be
available soon, sorry about that! In the meanwhile, inspect the V2 website or view https://infima.dev/ to see what
styles are available).

You can migrate CommonJS to ES6 imports/exports.

Here's a typical Docusaurus v2 page:

Copy

The following code could be helpful for migration of various pages:

Index page - Flux (recommended), Docusaurus 2, Hermes
Help/Support page - Docusaurus 2, Flux

Content#

Replace AUTOGENERATED_TABLE_OF_CONTENTS#

This feature is replaced by inline table of content

Update Markdown syntax to be MDX-compatible#

In Docusaurus 2, the markdown syntax has been changed to MDX. Hence there might be some broken syntax in the
existing docs which you would have to update. A common example is self-closing tags like and
 which
are valid in HTML would have to be explicitly closed now (and
). All tags in MDX documents have to
be valid JSX.

Frontmatter is parsed by gray-matter. If your frontmatter use special characters like :, you now need to quote it:
title: Part 1: my part1 title -> title: Part 1: "my part1 title".

Tips: You might want to use some online tools like HTML to JSX to make the migration easier.

Language-specific code tabs#

Refer to the multi-language support code blocks section.

Front matter#

The Docusaurus front matter fields for the blog have been changed from camelCase to snake_case to be consistent
with the docs.

https://zowe-docs.netlify.app/docs/creating-pages
https://infima.dev/
https://github.com/facebook/flux/blob/master/website/src/pages/index.js/
https://github.com/facebook/docusaurus/blob/master/website/src/pages/index.js/
https://github.com/facebook/hermes/blob/master/website/src/pages/index.js/
https://github.com/facebook/docusaurus/blob/master/website/src/pages/help.js/
http://facebook.github.io/flux/support
https://zowe-docs.netlify.app/docs/markdown-features/inline-toc
https://mdxjs.com/
https://github.com/jonschlinkert/gray-matter
https://transform.tools/html-to-jsx
https://zowe-docs.netlify.app/docs/markdown-features/code-blocks#multi-language-support-code-blocks

The fields authorFBID and authorTwitter have been deprecated. They are only used for generating the profile
image of the author which can be done via the author_image_url field.

Deployment#

The CNAME file used by GitHub Pages is not generated anymore, so be sure you have created it in /static/CNAME if
you use a custom domain.

The blog RSS feed is now hosted at /blog/rss.xml instead of /blog/feed.xml. You may want to configure server-
side redirects so that users' subscriptions keep working.

Test your site#

After migration, your folder structure should look like this:

Copy

Start the development server and fix any errors:

Copy

You can also try to build the site for production:

Copy
Version: 2.0.0-beta.0

Versioned sites

Read up https://docusaurus.io/blog/2018/09/11/Towards-Docusaurus-2#versioning first for problems in v1's
approach.

note

The versioned docs should normally be migrated correctly by the migration CLI

Migrate your versioned_docs front matter#

Unlike v1, The markdown header for each versioned doc is no longer altered by using
version-${version}-${original_id} as the value for the actual id field. See scenario below for better
explanation.

For example, if you have a docs/hello.md.

Copy

When you cut a new version 1.0.0, in Docusaurus v1, website/versioned_docs/version-1.0.0/hello.md looks
like this:

Copy

In comparison, Docusaurus 2 website/versioned_docs/version-1.0.0/hello.md looks like this (exactly same as
i i l)

https://docusaurus.io/blog/2018/09/11/Towards-Docusaurus-2#versioning
https://zowe-docs.netlify.app/docs/migration/automated

original)

Copy

Since we're going for snapshot and allow people to move (and edit) docs easily inside version. The id frontmatter is
no longer altered and will remain the same. Internally, it is set as version-${version}/${id}.

Essentially, here are the necessary changes in each versioned_docs file:

Copy

Migrate your versioned_sidebars#

Refer to versioned_docs id as version-${version}/${id} (v2) instead of
version-${version}-${original_id} (v1).

Because in v1 there is a good chance someone created a new file with front matter id "version-${version}-${id}"
that can conflict with versioned_docs id.

For example, Docusaurus 1 can't differentiate docs/xxx.md

Copy

vs website/versioned_docs/version-1.0.0/hello.md

Copy

Since we don't allow / in v1 & v2 for frontmatter, conflicts are less likely to occur.

So v1 users need to migrate their versioned_sidebars file

Example versioned_sidebars/version-1.0.0-sidebars.json:

versioned_sidebars/version-1.0.0-sidebars.json
Copy

Populate your versioned_sidebars and versioned_docs#

In v2, we use snapshot approach for documentation versioning. Every versioned docs does not depends on other
version. It is possible to have foo.md in version-1.0.0 but it doesn't exist in version-1.2.0. This is not possible
in previous version due to Docusaurus v1 fallback functionality
(https://v1.docusaurus.io/docs/en/versioning#fallback-functionality).

For example, if your versions.json looks like this in v1

versions.json
Copy

Docusaurus v1 creates versioned docs if and only if the doc content is different. Your docs structure might look
like this if the only doc changed from v1.0.0 to v1.1.0 is hello.md.

Copy

In v2 you have to populate the missing versioned docs and versioned sidebars (with the right frontmatter and

https://v1.docusaurus.io/docs/en/versioning#fallback-functionality

In v2, you have to populate the missing versioned_docs and versioned_sidebars (with the right frontmatter and
id reference too).

Copy

Convert style attributes to style objects in MDX#

Docusaurus 2 uses JSX for doc files. If you have any style attributes in your Docusaurus 1 docs, convert them to
style objects, like this:

Copy
Version: 2.0.0-beta.0

Translated sites
This page explains how migrate a translated Docusaurus v1 site to Docusaurus v2.

i18n differences#

Docusaurus v2 i18n is conceptually quite similar to Docusaurus v1 i18n with a few differences.

It is not tightly coupled to Crowdin, and you can use Git or another SaaS instead.

Different filesystem paths#

On Docusaurus v2, localized content is generally found at website/i18n/<locale>.

Docusaurus v2 is modular based on a plugin system, and each plugin is responsible to manage its own translations.

Each plugin has its own i18n subfolder, like: website/i18n/fr/docusaurus-plugin-content-blog

Updated translation APIs#

With Docusaurus v1, you translate your pages with <translate>:

Copy

On Docusaurus v2, you translate your pages with <Translate>

Copy

note

The write-translations CLI still works to extract translations from your code.

The code translations are now added to i18n/<lang>/code.json using Chrome i18n JSON format.

Stricter Markdown parser#

Docusaurus v2 is using MDX to parse Markdown files.

MDX compiles Markdown files to React components, is stricter than the Docusaurus v1 parser, and will make your
build fail on error instead of rendering some bad content

https://mdxjs.com/

build fail on error instead of rendering some bad content.

Also, the HTML elements must be replaced by JSX elements.

This is particularly important for i18n because if your translations are not good on Crowdin and use invalid Markup,
your v2 translated site might fail to build: you may need to do some translation cleanup to fix the errors.

Migration strategies#

This section will help you figure out how to keep your existing v1 translations after you migrate to v2.

There are multiple possible strategies to migrate a Docusaurus v1 site using Crowdin, with different tradeoffs.

caution

This documentation is a best-effort to help you migrate, please help us improve it if you find a better way!

Before all, we recommend to:

Migrate your v1 Docusaurus site to v2 without the translations
Get familiar with the new i18n system of Docusaurus v2 an
Make Crowdin work for your v2 site, using a new and untranslated Crowdin project and the Crowdin tutorial

danger

Don't try to migrate without understanding both Crowdin and Docusaurus v2 i18n.

Create a new Crowdin project#

To avoid any risk of breaking your v1 site in production, one possible strategy is to duplicate the original v1
Crowdin project.

info

This strategy was used to upgrade the Jest website.

Unfortunately, Crowdin does not have any "Duplicate/clone Project" feature, which makes things complicated.

Download the translation memory of your original project in .tmx format
(https://crowdin.com/project/<ORIGINAL_PROJECT>/settings#tm > View Records)
Upload the translation memory to your new project
(https://crowdin.com/project/<NEW_PROJECT>/settings#tm > View Records)
Reconfigure crowdin.yml for Docusaurus v2 according to the i18n docs
Upload the Docusaurus v2 source files with the Crowdin CLI to the new project
Mark sensitive strings like id or slug as "hidden string" on Crowdin
On the "Translations" tab, click on "Pre-Translation > via TM"
(https://crowdin.com/project/<NEW_PROJECT>/settings#translations)
Try first with "100% match" (more content will be translated than "Perfect"), and pre-translate your sources
Download the Crowdin translations locally
Try to run/build your site and see if there are any errors

You will likely have errors on your first-try: the pre-translation might try to translate things that it should not be
translated (frontmatter, admonition, code blocks...), and the translated md files might be invalid for the MDX parser.

https://zowe-docs.netlify.app/docs/i18n/introduction
https://zowe-docs.netlify.app/docs/i18n/crowdin
https://jestjs.io/blog/2021/03/09/jest-website-upgrade

You will have to fix all the errors until your site builds. You can do that by modifying the translated md files locally,
and fix your site for one locale at a time using docusaurus build --locale fr.

There is no ultimate guide we could write to fix these errors, but common errors are due to:

Not marking enough strings as "hidden strings" in Crowdin, leading to pre-translation trying to translate these
strings.
Having bad v1 translations, leading to invalid markup in v2: bad html elements inside translations and
unclosed tags

Anything rejected by the MDX parser, like using HTML elements instead of JSX elements (use the MDX
playground for debugging)

You might want to repeat this pre-translation process, eventually trying the "Perfect" option and limiting pre-
translation only some languages/files.

tip

Use mdx-code-block around problematic markdown elements: Crowdin is less likely mess things up with code
blocks.

note

You will likely notice that some things were translated on your old project, but are now untranslated in your new
project.

The Crowdin Markdown parser is evolving other time and each Crowdin project has a different parser version, which
can lead to pre-translation not being able to pre-translate all the strings.

This parser version is undocumented, and you will have to ask the Crowdin support to know your project's parser
version and fix one specific version.

Using the same cli version and parser version across the 2 Crowdin projects might give better results.

danger

Crowdin has an "upload translations" feature, but in our experience it does not give very good results for Markdown

Use the existing Crowdin project#

If you don't mind modifying your existing Crowdin project and risking to mess things up, it may be possible to use
the Crowdin branch system.

caution

This workflow has not been tested in practice, please report us how good it is.

This way, you wouldn't need to create a new Crowdin project, transfer the translation memory, apply pre-translations,
and try to fix the pre-translations errors.

You could create a Crowdin branch for Docusaurus v2, where you upload the v2 sources, and merge the Crowdin
branch to master once ready.

https://mdxjs.com/playground/
https://zowe-docs.netlify.app/docs/i18n/crowdin#mdx-solutions

Use Git instead of Crowdin#

It is possible to migrate away of Crowdin, and add the translation files to Git instead.

Use the Crowdin CLI to download the v1 translated files, and put these translated files at the correct Docusaurus v2
filesystem location.

