
Click Under the Hood

The following page explains how Click actually works under the hood. The explanation is initially based on single-threaded, user-level click;
we discuss multi-threaded and kernel mode Click in later sections of this document. Also note that line numbers might differ slightly
depending on which source version you have.

This document assumes you have read the Click SOSP paper or the Click thesis. Three dots in code excerpts ("...") denote that irrelevant
lines of code have been omitted. Numbers beginning with a plus ("+") sign denote line numbers.

1. Overview

This section gives a brief introduction to the internals of Click that is necessary in order to understand the sections that follow it.

1.1 Overall Structure

A Click router (where a router could be a firewall, NAT, or any other packet processing unit) contains a class called Master (lib/master.cc
and include/click/master.hh. This master contains, among other things, two other classes. The first of these is Router (lib/router.cc and
include/router.hh) which holds information about the actual configuration once it has been parsed from the .click file. The second is a set of
RouterThread instances (lib/routerthread.cc and include/click/routerthread.hh. As their name suggests, these constitute the running
threads of a Click router (in the case of single-threaded Click only a single thread exists).

Click schedules the router’s CPU with a task queue (depending on the values of some #DEFINEs the queue of tasks may be implemented as
a heap or a linked list). Each router thread runs a loop that processes the task queue one element at a time. The task queue is scheduled
with the flexible and lightweight stride scheduling algorithm. Tasks are simply elements that would like special access to CPU time. Thus,
elements are Click’s unit of CPU scheduling as well as its unit of packet processing. An element should be on the task queue if it frequently
initiates push or pull requests without receiving a corresponding request. For example, an element that polls a device driver should be
placed on the task queue; when run, it would remove packets from the driver and push them into the configuration. However, most
elements are never placed on the task queue. They are implicitly scheduled when their push or pull methods are called. Once an element is
scheduled, either explicitly or implicitly, it can initiate an arbitrary sequence of push and pull requests, thus implicitly scheduling other
elements.

Finally, it is worth pointing out that the basic unit of communication between elements is the Packet, defined in include/click/packet.hh.
This is the object that most element execution methods expect to receive and/or output.

1.2 Element Scheduling

In this section we give a more detailed introduction to how elements are scheduled to run in Click. As mentioned, Click uses tasks
(essentially elements) as its basic unit of scheduling; tasks are defined in include/click/task.hh. Not all elements need to be scheduled:
many of them will be implicitly scheduled when a scheduled element calls them. Exactly which elements are scheduled and which are
implicitly called depends on the elements themselves. To make the discussion more concrete, imagine the following simple Click

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

1 of 28 7/26/2017 1:25 PM

configuration file:

FromDevice("eth0")
 -> Strip(14)

-> CheckIPHeader(BADSRC 18.26.4.255 2.255.255.255 1.255.255.255)
-> Queue
-> ToDevice("eth0");

In this case, FromDevice's initialize method uses the ScheduleInfo class to periodically schedule itself. Strip, CheckIPHeader and Queue do
not do so, as they are all implicitly called when FromDevice executes. In greater detail, when FromDevice is scheduled to run, its selected
method is called which in turn makes a call to output(0).push(p). Since in our case this element is connected to Strip, this call essentially
causes the simple_action callback of Strip to run. This method's returning of a Packet object triggers execution of the callback of the next
element down the line in the configuration, in this case CheckIPHeader. This element's callback is also simple_action, which once again
causes execution of Queue's callback method (enq) to run when it returns a packet.

At this point the execution chain finishes and control returns to the scheduler. At the other end of the configuration, ToDevice also
schedules itself to run periodically. When its callback run_task runs, it pulls a packet from the queue, sends it out a physical interface and
returns control back to the scheduler. Periodic scheduling is not the only way for elements to schedule themselves: InfiniteSource, for
instance, schedules itself once during initialization, and re-schedules itself each time its callback is executed (up to the number of packets
it's supposed to generate). As can be seen, different elements have different callbacks (although there's a limited number of them); we will
explain how these get used later on in this document.

1.3 Source Tree Structure

The listing below gives an overview of the Click source tree. Note that the listing is not complete, limiting itself to showing directories
relevant to this document's discussion.

.
|-- conf // various Click configuration files
|-- drivers // drivers with Click extensions (for polling)
|-- elements // the actual Click elements
|-- etc // patch and other miscellaneous files
|-- include
| |-- click // base Click header files
|-- lib // base Click cpp files
|-- linuxmodule // Click linux kernel mode files
`-- userlevel // Click user level files

2. When Click Runs

The process begins when the install binary is executed (click for user-level, click-install for the kernel-based version). The source for this is
found in userlevel/click.cc, and the main is found in line 421; here's an excerpt:

static Router *router;

...

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

2 of 28 7/26/2017 1:25 PM

int
main(int argc, char **argv)
{
 click_static_initialize();

 ...

router = parse_configuration(router_file, file_is_expr, false, errh);

 ...

router->master()->thread(0)->driver();
}

In this abbreviated excerpt we can see that running a Click router consists of doing a bit of initialization, parsing the given router
configuration, and running the router thread (the 0 in thread(0) is because we're running single-threaded Click; the multi-threaded
version would look slightly different). We will now explain each of these stages in greater detail.

2.1 Initialization

The click_static_initialize function, found in userlevel/click.cc +442 is simple:

 ...

cp_va_static_initialize();

 ...

Router::static_initialize();

 ...

click_export_elements();

The first function initializes element parameter types and the second one router parameters. The third call warrants a closer look, as it
takes care of populating a data structure with the names and other information about all available elements. The function is automatically
defined during the build process in the file userlevel/elements.cc:

#include <click/config.h>
#include <click/package.hh>
#include "../elements/standard/delayshaper.hh"
#include "../elements/threads/spinlockrelease.hh"
#include "../elements/test/listtest.hh"

 ... (many other elements) ...

beetlemonkey(uintptr_t heywood)
{

switch (heywood) {
case 0: return new AdjustTimestamp;
case 1: return new AggregateCounter;

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

3 of 28 7/26/2017 1:25 PM

case 2: return new AggregatePacketCounter;

 ... (many other elements) ...

case 259: return new ToRawSocket;
case 260: return new ToSocket;
case 261: return new UMLSwitch;
default: return 0;

}
}

void
click_export_elements()
{
(void) click_add_element_type_stable("AdjustTimestamp",beetlemonkey,0);

 ... (many other elements) ...

(void) click_add_element_type_stable("ToRawSocket", beetlemonkey, 259);
(void) click_add_element_type_stable("ToSocket", beetlemonkey, 260);
(void) click_add_element_type_stable("UMLSwitch", beetlemonkey, 261);

 CLICK_DMALLOC_REG("nXXX");
}

As shown, the file defines the elements that are available, includes their header files and assigns numbers to each of the elements. In turn,
the function click_add_element_type_stable is called; this function is once again defined in lib/driver.cc, +399:

extern "C" int
click_add_element_type_stable(const char *ename,
 Element *(*func)(uintptr_t),

uintptr_t thunk)
{

assert(ename);
if (Lexer *l = click_lexer())

return l->add_element_type(String::make_stable(ename),
 func,
 thunk);

else
return -99;

}

This function in turn adds the element to the lexer (used to parse Click configuration files) by calling add_element_type with the element's
name, a pointer to its class, and the element code "type" (an integer). The function is itself defined in lib/lexer.cc +836:

int
Lexer::add_element_type(const String &name, ElementFactory factory, uintptr_t thunk,

bool scoped)
{

int tid = _element_types.size();
 _element_types.push_back(ElementType());
 _element_types[tid].factory = factory;
 _element_types[tid].thunk = thunk;
 _element_types[tid].name = name;
 _element_types[tid].next = _last_element_type |

(scoped ? (int)ET_SCOPED : 0);

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

4 of 28 7/26/2017 1:25 PM

if (name)
 _element_type_map.set(name, tid);
 _last_element_type = tid;

return tid;
}

where the relevant data structures are defined in include/click/lexer.hh, +153, as:

struct ElementType {
 ElementFactory factory;

uintptr_t thunk;
 String name;

int next;
};

HashTable<String, int> _element_type_map;

Vector<ElementType> _element_types;

At the end of all of these calls the lexer has a data structure called _element_types containing element names, (integer) types and
factories. In addition, the lexer also keeps a separate hash _element_types mapping element names to their integer types.

2.2 Configuration Parsing

The process begins once again in the main of userlevel/click.cc (+588) with a call to parse_configuration (+303):

static Router *
parse_configuration(const String &text, bool text_is_expr, bool hotswap,
 ErrorHandler *errh)
{
 Master *master = (router ? router->master() : new Master(nthreads));
 Router *r = click_read_router(text, text_is_expr, errh, false, master);

if (!r)
return 0;

 ...

return r;

The function is straightforward, receiving a Click configuration in the form of a string and delegating most of the work to click_read_router,
defined in lib/driver.cc +481:

Router *
click_read_router(String filename,

bool is_expr,
 ErrorHandler *errh,

bool initialize,
 Master *master)
{
 ...

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

5 of 28 7/26/2017 1:25 PM

// read file
 String config_str;

if (is_expr) {
 config_str = filename;
 filename = "config";

} else {
 config_str = file_string(filename, errh);

if (!filename || filename == "-")
 filename = "<stdin>";

}

 ...

RequireLexerExtra lextra(&archive);
int cookie = l->begin_parse(config_str, filename, &lextra, errh);
while (l->ystatement())

/* do nothing */;
 Router *router = l->create_router(master ? master : new Master(1));
 l->end_parse(cookie);

 ...

if (initialize)
if (errh->nerrors() > before || router->initialize(errh) < 0) {

delete router;
return 0;

}

return router;

The function calls begin_parse on the lexer to initialize some basic variables and then calls ystatement (defined in lib/lexer.cc +1798),
which calls yconnection (lib/lexer.cc +1435) and which, in turn, subsequently calls yelement (lib/lexer.cc +1163) on each of the elements:

bool
Lexer::yelement(Vector<int> &result, bool in_allowed)
{
 ...

*resp = get_element(e->name,
 e->type >= 0 ? e->type : e->decl_type,
 e->configuration,
 e->filename,
 e->lineno);

 ...

We omit almost all of this function's implementation since its details are largely unimportant for our purposes, What is important is the call
to get_element, whose implementation is in lib/lexer.cc +993:

int
Lexer::get_element(String name, int etype, const String &conf,

const String &filename, unsigned lineno)
{
 ...

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

6 of 28 7/26/2017 1:25 PM

 _c->_element_names.push_back(name);
 _c->_element_configurations.push_back(conf);

if (!filename && !lineno) {
 _c->_element_filenames.push_back(_file._filename);
 _c->_element_linenos.push_back(_file._lineno);

} else {
 _c->_element_filenames.push_back(filename);
 _c->_element_linenos.push_back(lineno);

}
 _c->_elements.push_back(etype);
 _c->_element_nports[0].push_back(0);
 _c->_element_nports[1].push_back(0);

return eid;
}

The related data structures are defined in include/click/lexer.hh, +170:

 HashTable<String, int> _element_map;
 Compound *_c;

with Compound being defined in lib/lexer.cc +117:

class Lexer::Compound : public Element { public:
 ...

private:
 Vector<int> _elements;
 Vector<String> _element_names;
 Vector<String> _element_configurations;
 Vector<String> _element_filenames;
 Vector<unsigned> _element_linenos;
 Vector<int> _element_nports[2];
 Vector<Router::Connection> _conn;

friend class Lexer;
}

As shown, get_element populates _c and _element_map with information about the actual elements in the configuration file. Finally, recall
from the listing of click_read_router the call to create_router, defined in lib/lexer.cc +1933:

Router *
Lexer::create_router(Master *master)
{
 Router *router = new Router(_file._big_string, master);

if (!router)
return 0;

 ...

// add elements to router
 Vector<int> router_id;

for (int i = 0; i < _c->_elements.size(); i++) {
int etype = _c->_elements[i];
if (etype == TUNNEL_TYPE)

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

7 of 28 7/26/2017 1:25 PM

 router_id.push_back(-1);
else if (Element *e = (*_element_types[etype].factory)

(_element_types[etype].thunk)) {
int ei = router->add_element(e,

 _c->_element_names[i],
 _c->_element_configurations[i],
 _c->_element_filenames[i],
 _c->_element_linenos[i]);
 router_id.push_back(ei);

} else {
 _errh->lerror(_c->element_landmark(i),

"failed to create element %<%s%>",
 _c->_element_names[i].c_str());
 router_id.push_back(-1);

}
}

 ...

// expand connections to router
int pre_expanded_nc = _c->_conn.size();
for (int i = 0; i < pre_expanded_nc; i++) {

int fromi = router_id[_c->_conn[i][1].idx];
int toi = router_id[_c->_conn[i][0].idx];
if (fromi < 0 || toi < 0)

 add_router_connections(i, router_id);
}

// use router element numbers
for (Connection *cp = _c->_conn.begin(); cp != _c->_conn.end(); ++cp) {

(*cp)[0].idx = router_id[(*cp)[0].idx];
(*cp)[1].idx = router_id[(*cp)[1].idx];

}

// sort and add connections to router
 click_qsort(_c->_conn.begin(), _c->_conn.size());

for (Connection *cp = _c->_conn.begin(); cp != _c->_conn.end(); ++cp)
if ((*cp)[0].idx >= 0 && (*cp)[1].idx >= 0)

 router->add_connection((*cp)[1].idx,
(*cp)[1].port,
(*cp)[0].idx,
(*cp)[0].port);

// add requirements to router
for (int i = 0; i < _requirements.size(); i += 2)

 router->add_requirement(_requirements[i], _requirements[i+1]);

return router;
}

The main thing to take away from this listing is that a new Router variable is instantiated and initialized with the string of the
configuration file and the Master instance given to the function (recall that Master contains a Router instance and potentially several
RouterThread instances). Another equally important point is that it is here that elements are actually instantiated, specifically in the call:

Element *e =(*_element_types[etype].factory)(_element_types[etype].thunk)

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

8 of 28 7/26/2017 1:25 PM

The first part of the call, (*_element_types[etype].factory), resolves to the function beetlemonkey (recall listing for userlevel/elements.cc),
to which we essentially pass as a parameter an integer representing the element type (this corresponds to
(_element_types[etype].thunk)). The function beetlemonkey then returns a new element depending on the type given as a parameter.
Going back to create_router, the function also places calls to add_element and add_connection, which populate private data member
variables of Router regarding the router's configuration (the following listing is from include/click/router.hh, +227):

Vector<Element*> _elements;
Vector<String> _element_names;
Vector<String> _element_configurations;
Vector<String> _element_landmarks;
Vector<Connection> _conn;
Vector<String> _requirements;

The last step before actually running the router is to initialize the elements themselves. To do so, recall the bottom of the listing
click_read_router: one of the last lines makes a call to router->initialize, defined in lib/router.cc +1043:

int
Router::initialize(ErrorHandler *errh)
{
 ...

for (int ord = 0; ord < _elements.size(); ord++) {
if ((r = _elements[i]->configure(conf, &cerrh)) < 0) {

 element_stage[i] = Element::CLEANUP_CONFIGURE_FAILED;
 all_ok = false;

if (cerrh.nerrors() == before) {
if (r == -ENOMEM)

 cerrh.error("out of memory");
else

 cerrh.error("unspecified error");
}

}
else

 element_stage[i] = Element::CLEANUP_CONFIGURED;
}

 ...

if (all_ok) {
 _state = ROUTER_PREINITIALIZE;
 initialize_handlers(true, true);

for (int ord = 0; all_ok && ord < _elements.size(); ord++) {

 ...

if (_elements[i]->initialize(&cerrh) >= 0)
 element_stage[i] = Element::CLEANUP_INITIALIZED;

else {
if (cerrh.nerrors() == before && !_elements[i]->cast("Error"))

 cerrh.error("unspecified error");
 element_stage[i] = Element::CLEANUP_INITIALIZE_FAILED;
 all_ok = false;

}
}

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

9 of 28 7/26/2017 1:25 PM

}

The reason this code fragment is important is because it takes care of calling each element's configure and initialize methods, in that order.
Elements use the first method to receive configuration information (i.e., the parameters given to an element in a Click configuration file).
The second is used to initialize the element, including whether it should schedule itself to run or not (recall the section on scheduling at
the beginning of this document). With all of this in place, the Master object, and the Router object it contains, have all the information
needed to start running the router.

2.3 Router Execution

The process begins in userlevel/click.cc's main with a call to router->master()->thread(0)->driver() (in the case of single-threaded Click),
which is implemented in lib/routerthread.cc +513:

void
RouterThread::driver()
{

const volatile int * const stopper = _master->stopper_ptr();
int iter = 0;

 ...

driver_loop:

if (*stopper == 0) {
// run occasional tasks: timers, select, etc.

 iter++;

 _master->run_signals(this);

if ((iter % _iters_per_os) == 0)
 run_os();

bool run_timers = (iter % _master->timer_stride()) == 0;
if (run_timers) {

 _master->run_timers(this);
}

}

// run task requests (1)
if (_pending_head) // uintptr_t, from include/master.hh +103

 process_pending();

 run_tasks(_tasks_per_iter); // _tasks_per_item set to 128 on linux

// check to see if driver is stopped
if (*stopper > 0) {

 driver_unlock_tasks();
bool b = _master->check_driver();

 driver_lock_tasks();
if (!b)

goto finish_driver;
}

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

10 of 28 7/26/2017 1:25 PM

goto driver_loop;

 finish_driver:
 driver_unlock_tasks();
}

The basic idea of this function is simple enough: infinitely stay in the driver_loop until the function _master->check_driver(), which
returns whether there are any routers running in the master, returns false. Ignoring calls to yield execution to the OS (run_os) or running
timers (_master->run_timers(this)), most of the work is carried out by the run_tasks call, defined in lib/routerthread.cc + 342:

inline void
RouterThread::run_tasks(int ntasks)
{
 ...

Task *t;
for (; ntasks >= 0; --ntasks) {

 t = task_begin();
if (t == this)

break;

 t->fast_remove_from_scheduled_list();

 ...

// 21.May.2007: Always set the current thread's pass to the current
// task's pass, to avoid problems when fast_reschedule() interacts
// with fast_schedule() (passes got out of sync).

 _pass = t->_pass;

 t->_status.is_scheduled = false;
 t->fire();

 ...
}

}

This function runs a set number of tasks (set to 128 on linux). In each iteration, it removes the first task from the list, and sets (in
fast_remove_from_scheduled_list) the next task as the current task to run.It then calls the task's fire method, defined in include/click
/task.hh +554 :

inline void
Task::fire()
{
 ...

if (!_hook)
(void) ((Element*)_thunk)->run_task(this);

else
(void) _hook(this, _thunk);

 ...
}

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

11 of 28 7/26/2017 1:25 PM

with the various variables shown having the following definitions in include/click/task.hh:

// defines TaskCallback as a pointer to a function returning bool
// and taking Task *, void * as parameters
typedef bool (*TaskCallback)(Task *, void *);

 TaskCallback _hook;
void *_thunk;

In short, if an element's callback is run_task, fire directly calls that method, passing the element (the task) as a parameter. If, on the other
hand, the element uses a different callback, the function pointer _thunk, representing the callback, is called with the task and the _thunk
pointer as parameters.

How are these callbacks initialized? This depends on the element in question, but just to give an example consider InfiniteSource, whose
definition can be found in elements/standard/infinitesource.cc. Its constructor (+30) is defined as follows:

InfiniteSource::InfiniteSource()
: _packet(0), _task(this)

{
}

The line _task(this) causes a call to one of the Task constructors found in include/click/task.hh +289:

inline
Task::Task(Element* e)

: _prev(0), _next(0),
 _should_be_scheduled(false), _should_be_strong_unscheduled(false),
 _pass(0), _stride(0), _tickets(-1),
 _hook(0), _thunk(e),
 _thread(0), _home_thread_id(-1),
 _owner(0), _pending_nextptr(0)
{
}

The important part here is _thunk(e): this void * pointer gets set equal to the element, and it's precisely this pointer which will be used to
run the element's run_task callback when this task/element is scheduled (recall the listing of the fire method above).

So far we have explained how schedulable elements schedule themselves and how their callbacks are called. We have yet to describe how
implicitly-scheduled elements (those than run when scheduled elements call them) are actually executed. The details can vary depending
on the Click configuration in use and the elements in it, but the basic concepts should be the same irrespectively. Given this, it helps to
use a sample Click configuration to drive the rest of the explanation (this listing comes from conf/test.click):

InfiniteSource(DATA \<00 00 c0 ae 67 ef 00 00 00 00 00 00 08 00
45 00 00 28 00 00 00 00 40 11 77 c3 01 00 00 01
02 00 00 02 13 69 13 69 00 14 d6 41 55 44 50 20
70 61 63 6b 65 74 21 0a>, LIMIT 5, STOP true)

-> Strip(14)
-> Align(4, 0) // in case we're not on x86
-> CheckIPHeader(BADSRC 18.26.4.255 2.255.255.255 1.255.255.255)

 -> Print(ok)

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

12 of 28 7/26/2017 1:25 PM

-> Discard;

The actual parameters passed to the various elements are irrelevant for our purposes; this configuration simply generates 5 packets, prints
their contents and discards them. Note that for the explanation below all listings for a particular element refer to the .cc file found under
the elements directory and its sub-directories.

Before we begin, it is worth pointing out that by and large Click uses three callbacks for implicitly-scheduled elements, including default
implementations; these are defined in lib/element.cc:

void
Element::push(int port, Packet *p)
{
 p = simple_action(p);

if (p)
 output(port).push(p);
}

Packet *
Element::pull(int port)
{
 Packet *p = input(port).pull();

if (p)
 p = simple_action(p);

return p;
}

Packet *
Element::simple_action(Packet *p)
{

return p;
}

The process begins as explained before, with InfiniteSource using ScheduleInfo to periodically schedule itself. When it is scheduled, its
run_task method runs (+109):

bool
InfiniteSource::run_task(Task *)
{

if (!_active || !_nonfull_signal)
return false;

int n = _burstsize;
if (_limit >= 0 && _count + n >= (ucounter_t) _limit)

 n = (_count > (ucounter_t) _limit ? 0 : _limit - _count);
for (int i = 0; i < n; i++) {

 Packet *p = _packet->clone();
if (_timestamp)

 p->timestamp_anno().assign_now();
 output(0).push(p);

}
 _count += n;

if (n > 0)
 _task.fast_reschedule();

else if (_stop && _limit >= 0 && _count >= (ucounter_t) _limit)
 router()->please_stop_driver();

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

13 of 28 7/26/2017 1:25 PM

return n > 0;
}

As can be seen, this method calls output(0).push(p). In this case, the next element down the line is Strip. Since its class doesn't have a
push method implemented, the default method in the Element superclass is called instead, which in turns calls Strip::simple_action and
output(port).push(p).

The next element is Align. This time, Align does implement a push method, so it is called:

void
Align::push(int, Packet *p)
{
 output(0).push(smaction(p));
}

Ignoring the details of smaction, this element then calls CheckIPHeader's push method. Since it doesn't define one, once again the default
provided by Element is used. The next element is Print, which once again relies on the default push method. Finally, the Discard element
provides its own push method:

void
Discard::push(int, Packet *p)
{
 _count++;
 p->kill();
}

This method simply kills the packet and releases any memory allocated to it. At this point the execution chain started by InfiniteSource's
output(0).push(p) is finished, and the process will repeat 4 more times corresponding to the remaining packets to generate (see for loop in
the listing of the element's run_task method).

Once the remaining packets are generated and processed, run_task returns control to the scheduler. In most configurations the scheduler
would then schedule the next task. In this particular one, no more tasks are left to run, so the router process finishes and quits.

3. Kernel Mode

In this section we describe how Click works when run in kernel mode. The process begins with a different executable called click-install.
This command can take a number of arguments, but in the simplest case takes the name of a file containing a Click configuration, as in the
user-level case. The command is defined in tools/click-install/click-install.cc, and its main looks as follows (+301):

int
main(int argc, char **argv)
{
 click_static_initialize();

 ...

RouterT *r = read_router(router_file, file_is_expr, nop_errh);

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

14 of 28 7/26/2017 1:25 PM

 ...

// install Click module if required
if (access(clickfs_packages.c_str(), F_OK) < 0) {

// find and install proclikefs.o
 StringMap modules(-1);

if (read_active_modules(modules, errh) && modules["proclikefs"] < 0) {
 String proclikefs_o =
 clickpath_find_file("proclikefs.ko", "lib", CLICK_LIBDIR, errh);
 install_module(proclikefs_o, String(), errh);

}
 String click_o =
 clickpath_find_file("click.ko", "lib", CLICK_LIBDIR, errh);

// install it in the kernel
 String options;

if (threads > 1)
 options += "threads=" + String(threads);

if (greedy)
 options += " greedy=1";

if (!accessible)
 options += " accessible=0";

if (uid != 0)
 options += " uid=" + String(uid);

if (gid != 0)
 options += " gid=" + String(gid);

if (cpu != -1)
 options += " cpu=" + String(cpu);
 install_module(click_o, options, errh);

// make clickfs_prefix directory if required
if (access(clickfs_dir.c_str(), F_OK) < 0 && errno == ENOENT) {

if (mkdir(clickfs_dir.c_str(), 0777) < 0)
 errh->fatal("cannot make directory %s: %s",
 clickfs_dir.c_str(),

strerror(errno));
}

// mount Click file system
int mount_retval = mount("none", clickfs_dir.c_str(), "click", 0, 0);

 ...

String clickfs_config = clickfs_prefix + String("/config");

// write flattened configuration to CLICKFS/config
int exit_status = 0;
{

 String config_place = (hotswap ? clickfs_hotconfig : clickfs_config);
int fd = open(config_place.c_str(), O_WRONLY | O_TRUNC);

 String config = r->configuration_string();
int pos = 0;
while (pos < config.length()) {

 ssize_t written = write(fd,
 config.data() + pos,
 config.length() - pos);

if (written >= 0)
 pos += written;

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

15 of 28 7/26/2017 1:25 PM

else if (errno != EAGAIN && errno != EINTR)
 errh->fatal("%s: %s", config_place.c_str(), strerror(errno));

}
int retval = close(fd);

}
}

As with userlevel Click, this function begins by calling the click_static_initialize method that initializes some basic variables such as
parameter types, and a list of which elements are available. Also like in user-level Click, the function then parses the router configuration.
Here's where things start to differ. In order to run in kernel mode, Click needs to be loaded as a kernel module. In addition, Click in kernel
mode uses entries in the Linux /proc filesystem in order to, among others, implement the elements' read and write handlers. This system is
implemented as another kernel module called proclikefs. Starting a router in kernel mode consists, then, of inserting the proclikefs kernel
module (via the install_module method), mounting that filesystem (see call to mount above) and inserting the actual Click kernel module
(again, via the install_module method). The install_module method is found at +196:

static void
install_module(const String &filename, const String &options,
 ErrorHandler *errh)
{
 String cmdline = "/sbin/insmod ";

if (output_map)
 cmdline += "-m ";
 cmdline += filename;

if (options)
 cmdline += " " + options;

int retval = system(cmdline.c_str());
if (retval != 0)

 errh->fatal("'%s' failed", cmdline.c_str());
}

Calling this method on our setup results in the system calls /sbin/insmod /usr/local/lib/proclikefs.ko and /sbin/insmod /usr/local
/lib/click.ko. The proclikefs.ko module is defined in linuxmodule/proclikefs.c, and the actual Click filesystem in linuxmodule/clickfs.cc,
though we will skip any detailed explanation of how it works. The Linux kernel module main program is defined in linuxmodule/module.cc,
with execution beginning, as with all Linux kernel modules, with the init_module function (+279):

extern "C" int
init_module()
{

// C++ static initializers
 NameInfo::static_initialize();
 cp_va_static_initialize();

// default provisions
 Router::static_initialize();
 NotifierSignal::static_initialize();

// thread manager, sk_buff manager, config manager
 click_init_sched(ErrorHandler::default_handler());
 skbmgr_init();
 click_init_config();

// global handlers

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

16 of 28 7/26/2017 1:25 PM

 Router::add_read_handler(0,
"packages",

 read_global,
(void *) (intptr_t) h_packages);

 Router::add_read_handler(0,
"meminfo",

 read_global,
(void *) (intptr_t) h_meminfo);

 Router::add_read_handler(0,
"cycles",

 read_global,
(void *) (intptr_t) h_cycles);

 Router::add_read_handler(0,
"errors",

 read_errors,
0,

 HANDLER_DIRECT);
 Router::add_read_handler(0,

"messages",
 read_messages,

0,
 HANDLER_DIRECT);

 ...

init_clickfs();

return 0;
}

Here once again the process starts with cp_va_static_initialize. Note that this call had been done at the beginning of this section already.
The difference is that the first time it was done by the click-install tool, while this time it is being run by the Click kernel module. The next
line worth pointing out is the call to click_init_sched, defined in linuxmodule/sched.cc +340:

void
click_init_sched(ErrorHandler *errh)
{
 ...

click_master = new Master(1);

for (int i = 0; i < click_master->nthreads(); i++) {
 RouterThread *thread = click_master->thread(i);
 pid_t pid = kernel_thread

(click_sched, thread, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
 ...

}

 ...

}

As shown, this function creates a new Master object and adds RouterThreads to it (only one in our case, since we have single-threaded
Click). For each of the threads it creates a kernel thread by calling kernel_thread and setting click_sched as its callback function; this
function is defined in linuxmodule/sched.cc +81:

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

17 of 28 7/26/2017 1:25 PM

static int
click_sched(void *thunk)
{
 RouterThread *rt = (RouterThread *)thunk;

 ...

printk("<1>click: starting router thread pid %d (%p)\n",
 current->pid,
 rt);

// add pid to thread list
 SOFT_SPIN_LOCK(&click_thread_lock);

if (click_thread_tasks)
 click_thread_tasks->push_back(current);
 SPIN_UNLOCK(&click_thread_lock);

// driver loop; does not return for a while
 rt->driver();

// release master (preserved in click_init_sched)
 click_master->unuse();

// remove pid from thread list
 SOFT_SPIN_LOCK(&click_thread_lock);

if (click_thread_tasks)
for (int i = 0; i < click_thread_tasks->size(); i++) {

if ((*click_thread_tasks)[i] == current) {
(*click_thread_tasks)[i] = click_thread_tasks->back();

 click_thread_tasks->pop_back();
break;

}
}

 printk("<1>click: stopping router thread pid %d\n", current->pid);
 SPIN_UNLOCK(&click_thread_lock);

return 0;
}

This function essentially invokes the thread's router and calls its driver function which actually runs the router (an explanation of the
driver function appears in the user-level Click section above). When the router finishes, control returns and click_sched performs a bit of
clean-up before returning.

So far we installed the click.ko and proclikefs modules, set up kernel threads and set them running. However, we have not yet told the
router to actually install a particular Click configuration. For this we need to go back to the listing of click-install's main method. After the
modules are inserted, the click-install tool takes care of writing the string representing the Click configuration to /proc/click/config.

When the entry is written to, its read handler gets called. Where is this handler set-up? The call to click_init_config in the listing of
init_module above starts off the process; click_init_config is defined in linuxmodule/config.cc +171:

void
click_init_config()
{
 lexer = new Lexer;

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

18 of 28 7/26/2017 1:25 PM

 Router::add_read_handler(0, "classes", read_classes, 0);
 Router::add_write_handler(0, "config", write_config, 0);
 Router::add_write_handler(0, "hotconfig", write_config, (void *)1);
 Router::set_handler_flags(0, "config",
 HANDLER_WRITE_UNLIMITED |
 Handler::RAW |
 Handler::NONEXCLUSIVE);
 Router::set_handler_flags(0, "hotconfig",
 HANDLER_WRITE_UNLIMITED |
 Handler::RAW |
 Handler::NONEXCLUSIVE);

 click_config_generation = 1;
 current_config = new String;

 click_export_elements();
}

Of particular interest to this discussion is the line related to the "config" entry, for which the function write_config is set as its handler. This
function is found in linuxmodule/config.cc +157:

static int
write_config(const String &s, Element *, void *thunk, ErrorHandler *)
{
 click_clear_error_log();

int retval = (thunk ? hotswap_config(s) : swap_config(s));
return retval;

}

As in this case thunk is 0 (see call to add_write_handler above), swap_config is called (linuxmodule/config.cc +118):

static int
swap_config(const String &s)
{
 kill_router();

if (Router *router = parse_router(s)) {
if (router->initialize(click_logged_errh) >= 0)

 router->activate(click_logged_errh);
 install_router(s, router);

return (router->initialized() ? 0 : -EINVAL);
} else {

 install_router(s, 0);
return -EINVAL;

}
}

Just as in the userlevel Click case, this function calls parse_router in order to parse the router configuration and return a Router object.
The function then installs the router by calling install_router(s, router), found in linuxmodule/config.cc +94:

static void
install_router(const String &config, Router *r)
{

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

19 of 28 7/26/2017 1:25 PM

 click_config_generation++;
 click_router = r;

if (click_router)
 click_router->use();

*current_config = config;
}

with click_router defined in linuxmodule/module.cc, +37 as follows:

Router *click_router = 0;

If all of these operations were successful, the click-install tool finishes and exits, leaving the kernel threads to run the actual Click router.
The click-uninstall tool can then be used to remove these Click threads from the kernel.

4. Multi-threaded Click

Note that this section refers to kernel-mode multi-threaded Click, multi-threading in user level is currently marked as experimental.

To enable multi-threading, the first thing that's needed is to add an option to the configure script before building Click:

./configure --enable-multithread[=N]

When running Click configurations, an extra parameter needs to be given to the click-install tool

click-install -t 8 test.click

where t specifies the number of desired threads. The relevant bits in linuxmodule/click-install.cc are shown below:

#define THREADS_OPT 309

static const Clp_Option options[] = {
#if FOR_LINUXMODULE

{ "threads", 't', THREADS_OPT, Clp_ValUnsigned, 0 },
#endif
};

int
main(int argc, char **argv)
{

int threads = 1;

while (1) {
int opt = Clp_Next(clp);
switch (opt) {

#if FOR_LINUXMODULE
case THREADS_OPT:

 threads = clp->val.u;
if (threads < 1) {

 errh->error("must have at least one thread");

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

20 of 28 7/26/2017 1:25 PM

goto bad_option;
}
break;

#endif
}

}

#if FOR_LINUXMODULE
 String options;

if (threads > 1)
 options += "threads=" + String(threads);
 install_module(click_o, options, errh);
}

The main function parses the "t" command-line parameter and adds it to a string of options which is passed to the Click kernel module
when it is installed (essentially the install_module function generates a string consisting of /sbin/insmod /usr/local/lib/click.ko threads=N.
From the discussion in the previous section we know that control will now pass to linuxmodule/module.cc's init_module, which will in turn
call linuxmodule/sched.cc's click_init_sched, +340:

void
click_init_sched(ErrorHandler *errh)
{
#if HAVE_MULTITHREAD
 click_master = new Master(click_parm(CLICKPARM_THREADS));

 ...

for (int i = 0; i < click_master->nthreads(); i++) {
 click_master->use();
 RouterThread *thread = click_master->thread(i);
 thread->set_greedy(greedy);
 pid_t pid = kernel_thread

(click_sched, thread, CLONE_FS | CLONE_FILES | CLONE_SIGHAND);
if (pid < 0) {

 errh->error("cannot create kernel thread for Click thread %i!",
 i);
 click_master->unuse();

}
}

}

Note that only the parts relevant to multi-threading are shown above. This part is pretty simple, and limits itself to using the
CLICKPARM_THREADS macro (defined in linuxmodule/moduleparm.h) to retrieve the number of threads given to the module as a
parameter and using it as an argument to one of the Master constructors (lib/master.cc +62):

Vector<RouterThread*> _threads; // <-- from include/click/master.hh

Master::Master(int nthreads)
: _routers(0)

{
for (int tid = -1; tid < nthreads; tid++)

 _threads.push_back(new RouterThread(this, tid));
}

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

21 of 28 7/26/2017 1:25 PM

The Master object now has N RouterThreads, each with its own thread id. Going back to the listing of click_init_sched, the function now
runs through the threads in Master and launches a kernel thread for each of them, setting click_sched as their callback function. This
function is defined at +81 as:

static int
click_sched(void *thunk)
{
 RouterThread *rt = (RouterThread *)thunk;
#ifdef CONFIG_SMP

int mycpu = click_parm(CLICKPARM_CPU);
if (mycpu >= 0) {

 mycpu += rt->thread_id();
if (mycpu < num_possible_cpus() && cpu_online(mycpu))

 set_cpus_allowed(current, cpumask_of_cpu(mycpu));
else

 printk("<1>click: warning: cpu %d for thread %d offline\n",
 mycpu,
 rt->thread_id());

}
endif

 printk("<1>click: starting router thread pid %d (%p)\n",
 current->pid,
 rt);

// add pid to thread list
 SOFT_SPIN_LOCK(&click_thread_lock);

if (click_thread_tasks)
 click_thread_tasks->push_back(current);
 SPIN_UNLOCK(&click_thread_lock);

// driver loop; does not return for a while
 rt->driver();

// release master (preserved in click_init_sched)
 click_master->unuse();

// remove pid from thread list
 SOFT_SPIN_LOCK(&click_thread_lock);

if (click_thread_tasks)
for (int i = 0; i < click_thread_tasks->size(); i++) {

if ((*click_thread_tasks)[i] == current) {
(*click_thread_tasks)[i] = click_thread_tasks->back();

 click_thread_tasks->pop_back();
break;

}
}

 printk("<1>click: stopping router thread pid %d\n", current->pid);
 SPIN_UNLOCK(&click_thread_lock);

return 0;
}

The first lines of code are there to pin (i.e., assign) the thread to a CPU. The CLICKPARM_CPU is a parameter that can be given to click-
install to specify which CPU a configuration should run on. The function calls set_cpus_allowed to pin the current task to the mycpu cpu
(we're omitting a lot of details about these calls, including the variable current which is a struct task_struct * of the current task, to

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

22 of 28 7/26/2017 1:25 PM

improve readability). The function then calls the thread's driver() function in order for the Click configuration to run. After it finishes some
clean-up is done and the router thread finishes.

As described so far, when a thread runs it pulls a task (i.e., a schedulable Click element) and runs it; another thread pulls the next task
and so forth. This means that we don't have much control over which threads run which parts of a Click configuration. This is especially
important when we start making performance experiments and pinning particular threads to CPU cores. In fact, Click provides an element
called StaticThreadSched that allows us to assign specific schedulable elements to specific threads. Here's how one instance of such an
element might look like in a Click configuration file:

StaticThreadSched(fd0 0, td0 0,
 fd1 1, td0 1,
 fd2 2, td3 2,
 fd3 3, td2 3);

This configuration has four network interfaces (split into fd=FromDevice? and td=ToDevice? elements). A pair of FromDevice/ToDevice? is
assigned to a thread id (the second argument in each pair), for a total of four threads. This allows us to later on, for instance, assign each
of the four threads to different CPU cores in order to improve performance.

How does this element actually do its work? To see this, it is worth having a look at its implementation in elements/threads
/staticthreadsched.cc:

int
StaticThreadSched::configure(Vector<String> &conf, ErrorHandler *errh)
{
 Element *e;

int preference;
for (int i = 0; i < conf.size(); i++)
{

if (cp_va_space_kparse(conf[i], this, errh,
"ELEMENT", cpkP+cpkM, cpElement, &e,
"THREAD", cpkP+cpkM, cpInteger, &preference,

 cpEnd) < 0)
return -1;

 ...

 _thread_preferences[e->eindex()] = preference;
}

 _next_thread_sched = router()->thread_sched();
 router()->set_thread_sched(this);

return 0;
}

int
StaticThreadSched::initial_home_thread_id(Element *owner, Task *task,

bool scheduled)
{

int eidx = owner->eindex();
if (eidx >= 0 && eidx < _thread_preferences.size()

&& _thread_preferences[eidx] != THREAD_UNKNOWN)
return _thread_preferences[eidx];

if (_next_thread_sched)

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

23 of 28 7/26/2017 1:25 PM

return _next_thread_sched->initial_home_thread_id(owner,
 task,
 scheduled);

else
return THREAD_UNKNOWN;

}

Before going further it is worth pointing out that StaticThreadSched inherits not only from Element, but also from ThreadSched
(include/click/standard/threadsched.hh) which is essentially an empty "interface" class mandating the implementation of the
initial_home_thread_id function above. As shown in the listing, configure reads each [ELEMENT THREAD_ID] pair, populating the
_thread_preferences data structure (of type vector<int>). The eindex() function returns the element's index within its router; this acts as
an id. The configure function finishes by setting the element's router's scheduler to this (this is possible because, as mentioned,
StaticThreadSched inherits from ThreadSched).

So far we've explained the configure function. In order to show how initial_home_thread_id is used we need to start at a schedulable
element, for instance InfiniteSource, whose initialize method is as follows:

int
InfiniteSource::initialize(ErrorHandler *errh)
{

if (output_is_push(0)) {
 ScheduleInfo::initialize_task(this, &_task, errh);
 _nonfull_signal = Notifier::downstream_full_signal(this, 0, &_task);

}
return 0;

}

This method calls ScheduleInfo's initialize_task, defined in elements/standard/scheduleinfo.cc +117:

void
ScheduleInfo::initialize_task(Element *e, Task *task, bool schedule,
 ErrorHandler *errh)
{

int tickets = query(e, errh);
if (tickets > 0) {

 task->initialize(e, schedule);
 task->set_tickets(tickets);

}
}

This function calls Task's initialize method, defined in lib/task.cc +191:

void
Task::initialize(Element *owner, bool schedule)
{
 Router *router = owner->router();

int tid = router->initial_home_thread_id(owner, this, schedule);
 _thread = router->master()->thread(tid);
 _owner = owner;

 ...

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

24 of 28 7/26/2017 1:25 PM

 _status.home_thread_id = _thread->thread_id();
 _status.is_scheduled = schedule;

if (schedule)
 add_pending();
}

This is where the actual work is done. In particular, the function first retrieves the schedulable element's router, calling
initial_home_thread_id on it. Since we had changed the router's scheduler to be the StaticThreadSched element, this call will resolve to
StaticThreadSched::initial_home_thread_id, which will return the thread id corresponding to the owner element (i.e., the assignment we
had given as parameter to the StaticThreadSched element in the Click configuration file). The function then retrieves the thread
corresponding to the thread id and sets it as the running thread.

Lastly, we haven't talked about setting CPU affinities, i.e., how threads are assigned to CPU cores. Click largely leaves this up to the OS.
Under Linux, users can install a Click configuration and then set affinities afterwards, either through command-line tools like taskset or by
calling the sched_setaffinity and sched_getaffinity functions. If no affinities are set, the OS will decide the assignment. Another way would
be to write a new Click element to configure this; no such element exists yet.

5. Poll-based Click

In order to run Click in polling mode, a modified network driver is needed, which generally limits things to an Intel card. Patched versions
of the Intel drivers are provided within the Click source tree under the drivers sub-directory. The first thing to do is to insert the modified
driver's kernel module. Once this is done, create a Click configuration that uses the element PollDevice instead of the usual FromDevice.
That's it!

To do: perhaps a description of which modifications are needed for a driver to work with Click in polling mode, as well as a detailed
description of the PollDevice element.

6. Memory Allocation

The Click functions and definitions related to memory allocation operations are found in include/click/glue.hh and lib/glue.cc. glue.hh
defines the following:

include <linux/malloc.h>
include <linux/vmalloc.h>

define CLICK_LALLOC(size) (click_lalloc((size)))
define CLICK_LFREE(p, size) (click_lfree((p), (size)))
extern "C" {
void *click_lalloc(size_t size);
void click_lfree(volatile void *p, size_t size);
}

This file includes the standard Linux headers for malloc and vmalloc and sets up a couple of macro definitions: CLICK_LALLOC resolves to
glue.cc's click_lalloc function and CLICK_LFREE to its click_lfree, both covered below. Most of the interesting bits are in glue.cc, which

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

25 of 28 7/26/2017 1:25 PM

begins by defining some variables and macros:

uint32_t click_dmalloc_where = 0x3F3F3F3F;
size_t click_dmalloc_curnew = 0;
size_t click_dmalloc_totalnew = 0;
size_t click_dmalloc_failnew = 0;

struct task_struct *clickfs_task;
define CLICK_ALLOC(size) kmalloc((size), (current == clickfs_task ?
 GFP_KERNEL : GFP_ATOMIC))
define CLICK_FREE(ptr) kfree((ptr))

This code sets up some simple variables to keep track of memory allocation and potential leaks. For instance, click_dmalloc_curnew is used
to report any potential leaks when the Click Linux kernel module exits (linuxmodule/linux.cc +333):

extern "C" void
cleanup_module()
{

extern size_t click_dmalloc_curnew; /* glue.cc */

 ...

if (click_dmalloc_curnew) {
 printk("<1>click error: %d outstanding news\n",
 click_dmalloc_curnew);
 click_dmalloc_cleanup();

}
}

The macros shown simply replace calls to CLICK_ALLOC and CLICK_FREE with calls to Linux's kmalloc and kfree, respectively. Further
down the same file we find definitions for the new and delete operators:

void *
operator new(size_t sz) throw ()
{
 click_dmalloc_totalnew++;

if (void *v = CLICK_ALLOC(sz)) {
 click_dmalloc_curnew++;

return v;
} else {

 click_dmalloc_failnew++;
return 0;

}
}

void *
operator new[](size_t sz) throw ()
{
 click_dmalloc_totalnew++;

if (void *v = CLICK_ALLOC(sz)) {
 click_dmalloc_curnew++;

return v;
} else {

 click_dmalloc_failnew++;

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

26 of 28 7/26/2017 1:25 PM

return 0;
}

}

void
operator delete(void *addr)
{

if (addr) {
 click_dmalloc_curnew--;
 CLICK_FREE(addr);

}
}

void
operator delete[](void *addr)
{

if (addr) {
 click_dmalloc_curnew--;
 CLICK_FREE(addr);

}
}

Since kmalloc and its corresponding CLICK_ALLOC should only be used to allocate relatively small amounts of memory, Click provides
alternate functions:

extern "C" {

define CLICK_LALLOC_MAX_SMALL 131072

void *
click_lalloc(size_t size)
{

void *v;
 click_dmalloc_totalnew++;

if (size > CLICK_LALLOC_MAX_SMALL)
 v = vmalloc(size);

else
 v = CLICK_ALLOC(size);

if (v) {
 click_dmalloc_curnew++;

} else
 click_dmalloc_failnew++;

return v;
}

void
click_lfree(volatile void *p, size_t size)
{

if (p) {
if (size > CLICK_LALLOC_MAX_SMALL)

 vfree((void *) p);
else

 kfree((void *) p);
 click_dmalloc_curnew--;

}
}
}

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

27 of 28 7/26/2017 1:25 PM

If the amount of memory requested is less than CLICK_LALLOC_MAX_SMALL, CLICK_ALLOC and kfree are used as previously. If the
amount is greater, on the other hand, the functions make calls to vmalloc and the corresponding vfree.

A. Acknowledgment

The creation of this document was partly funded by the EU FP7 CHANGE (257422) Project.

http://www.change-project.eu/ [http://www.change-project.eu/]

clickunderhood.txt · Last modified: 2011/05/12 02:27 by felipe.huici

clickunderhood [Click] http://read.cs.ucla.edu/click/clickunderhood

28 of 28 7/26/2017 1:25 PM

