
Performance portable batched sparse linear
solvers in Kokkos Kernels

Presented by:

K. Liegeois, S. Rajamanickam & L. Berger-Vergiat

Kokkos User Group, December 12, 2023
SAND2023-14340C

CCR
Center for Computing Research



2 Outline

▶ Introduction:

▶ Batched Sparse Linear systems;
▶ Kokkos and Kokkos Kernels;

▶ Strategies for batched Krylov methods;

▶ Team batched SPMV;

▶ Implementation;
▶ Performances;

▶ Team batched GMRES;

▶ Implementation;
▶ Performances;

▶ Conclusions.



3 Introduction: Batched Sparse Linear systems

Numerical strategies for solving PDE problems can lead to a large number of small similar
linear systems to solve independently.

Example: a FE2 multiscale method requires a finite element computation for each Gauss
point of the macroscopic scale mesh. Those systems share the same sparsity pattern and can
be solved independently.

Need for a performance portable strategy to solve large numbers of relatively small
sparse linear systems.

A (X )= B

N

n

Batched size: N >> 1,
Number of rows: 10 ≤ n ≤ 2000.

Liegeois, K. et al. ”Performance Portable Batched Sparse Linear Solvers.” IEEE Transactions on Parallel and Distributed Systems 34.5 (2023): 1524-1535.



4 Why do we need batched sparse linear solvers?

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

10−3

10−2

10−1

100

101

102

Number of rows

T
im

e
[s
ec
]

cuSOLVER sparse QR
cuSOLVER sparse block QR
cuSOLVER batched dense

Batched GMRES

While usual sparse solvers or dense batched solvers are available and can be used in vendor
libraries, their are not well suited for batched sparse linear systems.



5 Introduction: Kokkos and Kokkos Kernels

Kokkos:

▶ C++ performance portability library;

▶ Enables single source performance portable codes;

▶ Provides programming models for shared-memory parallelism;

▶ Provides 3 levels of hierarchical parallelism: team level, thread level, vector level;

▶ Provides data abstractions for performance portability.

Kokkos Kernels:

▶ Targets the performance portable implementation of linear algebra kernels;

▶ Provides computational kernels which rely both on the Kokkos data abstractions and
programming models;

▶ Provides interface to vendor kernel implementations.



6 Introduction: Kokkos views

▶ An array of zero or more dimensions;

▶ Users can specify left (as in Fortran), right (as in C++),
or stride layout;

▶ Views can be defined on the host or the device;

▶ Best layout for performance depends on the used
shared-memory parallelism.



7 Introduction: Kokkos hierarchical parallelism

▶ A thread team is a collection of threads which can synchronize
and which share a scratch pad memory;

▶ Instead of mapping a 1-D range of indices to hardware
resources, Kokkos’ thread teams map a 2-D index range
(equivalent to 1-D grid of 1-D blocks in CUDA);

▶ The maximal number of teams is not architecture dependent,
it is only limited by the integer size type;

▶ The maximal team size (# threads per team) is architecture
dependent;

▶ The vector level needs to be vectorizable.

Team-1 Team-2

Thread-1 Thread-2 Thread-3 Thread-4

v1 v2 v3 v4 v5 v6 v7 v8

Kokkos GPUs CPUs
Team Thread block Work assigned to group of hyper threads

Kokkos thread (full, half, quarter...) Warp Work assigned to a single thread
Vector lane Threads within a warp Vectorization units



8 Strategies for batched Krylov methods

Parallelize over individual problems:

▶ A particular team is associated with a unique system at a given time;

▶ Every system converges independently;

▶ Vectorization and coalesced memory read in the Sparse Matrix-Vector multiplication
(SPMV) kernel are graph dependent.

Approach used by the Ginkgo team:
H. Anzt, A. Kashi, P. Nayak, et al. https://ginkgo-project.github.io.



9 Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

▶ A particular team is associated with a subset of systems at a given time;

▶ Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

▶ First subset approach: Solving the coupled problems:

▶ The matrices are gathered into one matrix, the Krylov method is then applied to the
system;

▶ The convergence depends on the union of the spectra of all the matrices; this can be
worse than the worst convergence taken one by one.



10 Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

▶ A particular team is associated with a subset of systems at a given time;

▶ Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

▶ Second subset approach: Solving the problems independently:

▶ The systems are kept independent, they are not coupled, the spectra are not gathered;
▶ The main drawback is the code divergence: inside a same subset, the Krylov methods

might require different numbers of iterations for different systems to converge; this can lead
to issues such as overflow if not treated carefully;

▶ Needs an implementation of the used kernels which supports subsets of values instead
of one value.



11 Strategies for batched Krylov methods

Parallelize over subsets of problems (two existing approaches):

▶ A particular team is associated with a subset of systems at a given time;

▶ Reuse of common variables such as the sparsity pattern, more data parallelism,
improved memory access pattern;

▶ Second subset approach: Solving the problems independently: Rest of this talk

▶ The systems are kept independent, they are not coupled, the spectra are not gathered;
▶ The main drawback is the code divergence: inside a same subset, the Krylov methods

might require different numbers of iterations for different systems to converge; this can lead
to issues such as overflow if not treated carefully;

▶ Needs an implementation of the used kernels which supports subsets of values instead
of one value.



12 Chosen batched strategy in Kokkos Kernels

First, a team parallel loop is used to loop over subsets of size m of the N matrices.
Then, a team has to solve m systems simultaneously.

m
1 ≤ m ≤ 50.

One team per color.

Software requirements:

▶ Krylov solvers at the team level which deal with possible occurrences of code
divergence (as discussed in the case of the ensemble propagation in Liegeois (2020));

▶ Performance portable batched Level 1 and 2 BLAS functions (AXPY, DOT, COPY,
SPMV, and GEMV) at the team level. Rest of this talk

Liegeois, K. et al. ”GMRES with embedded ensemble propagation for the efficient solution of parametric linear systems in uncertainty quantification of
computational models.” Computer Methods in Applied Mechanics and Engineering 369 (2020): 113188.



13 Performance portable batched SPMV at the team level

To illustrate the last software requirement, we discuss the case of the batched Sparse
Matrix-Vector multiplication (SPMV):

yℓ: = αℓAℓ:: xℓ: + βℓ yℓ: for all ℓ = 1, . . . ,m.

Targeted properties:

▶ To achieve maximum hardware occupancy,

▶ To have good memory access patterns such as a high percentage of coalesced memory
read on GPU,

▶ To have good performance independently of views layout,

▶ To have a balanced workload amongst teams and threads,

▶ To avoid unnecessary reduction and memory synchronization.



14 Team batched SPMV

▶ nm independent products between aℓj : and xℓ:,

▶ TeamVector loop over the nm indices to distribute evenly the work,

▶ The mapping of the index of the loop to the row fiber depends on the layout to enforce
as much coalesced memory loads as possible

A X

m

n

m

n

Layout left
Layout right



15 Team batched SPMV
Kokkos::parallel_for(
Kokkos::TeamVectorRange(member, 0, m * n),

[&](const int& i) {
int j, k;
getIndices<layout>(i, n, m, j, k);
const int rowLength = row_ptr(j + 1) - row_ptr(j);
ValueType sum = 0;
for (int l = 0; l < rowLength; ++l)

sum += values(k, row_ptr(j) + l) *
X(k , colIndices(row_ptr(j) + l));

sum *= alpha(k);
Y(k, j) = beta(k) * Y(k, j) + sum;

});

where:

template <typename layout> KOKKOS_INLINE_FUNCTION
typename std::enable_if<std::is_same<layout,

Kokkos::LayoutLeft>::value, void>::type
getIndices(const int i, const int /*n*/,

const int m, int &j, int &k) {
j = i / m; k = i % m;

}

k

j

▶ At the vector level, every i
(and therefore the pair
(j , k) ) is associated with
only one vector lane.

▶ No reduction nor memory
synchronization are
needed.



16 Team batched SPMV: performance portability

0.0 0.5 1.0 1.5 2.0 2.5

·104

0

25

50

75

100

Number of matrices

%
of

m
ax
im

al
th
ro
u
gh

p
u
t

Left gri30 V100
Right gri30 V100

Left isooctane V100
Right isooctane V100
Left gri30 Skylake
Right gri30 Skylake

Left isooctane Skylake
Right isooctane Skylake

Left gri30 MI50
Right gri30 MI50

Left isooctane MI50
Right isooctane MI50

The maximal throughput is computed assuming that every data used more than once is
reused from cache. Very good performance for left layout except for the isooctane on MI50.



17 Team batched GMRES

▶ Uses batched BLAS
kernels: SPMV, AXPY,
DOT, COPY, and GEMV,

▶ Continues the GMRES
while the m systems have
not converged,

▶ Stops the update of
converged system to avoid
underflow,

▶ Evaluated on devices
without communication
with the host.

for (size_t j = 0; j < maximum_iteration; ++j) {
A.apply(member, subview(V, ALL, j, ALL), W);
member.team_barrier();
P.apply(member, W, W);

for (size_t i = 0; i < j + 1; ++i) {
member.team_barrier();
auto V_i = subview(V, ALL, i, ALL);
TeamVectorDot<MemberType>::invoke
(member, W, V_i, tmp);

member.team_barrier();
TeamVectorCopy1D::invoke
(member, tmp, subview(H, ALL, i, j));

member.team_barrier();
parallel_for(

TeamVectorRange(member, 0, m),
[&](const OrdinalType& ii) {

tmp(ii) = -tmp(ii);
});

member.team_barrier();
TeamVectorAxpy<MemberType>::invoke
(member, tmp, V_i, W);

} //...



18 Batched GMRES performance: Impact of the grouping

▶ The grouping of the systems into subsets influences the measured performance,

▶ Best to group systems that need the same number of iterations to converge; but those
numbers are unknown a priori,

▶ Two tested ordering for the systems: the unsorted and the sorted orders.

0 10 20 30 40 50 60 70
0

5

10

15

20

Batch index

N
u
m
b
er

of
it
er
at
io
n
s

Unsorted
Sorted



19 Batched GMRES performance: Pele isooctane matrices

0

2

4

6

8

·10−2

T
im

e
[s
ec
]

V100

0

5 · 10−2

0.1

0.15
MI50

0 10,000 20,000 30,000

0

1

2

3
·10−2

Number of matrices

T
im

e
[s
ec
]

A100

0 10,000 20,000 30,000

0

2

4

6

8
·10−2

Number of matrices

MI250X

0 10,000 20,000 30,000

0

0.2

0.4

0.6

Number of matrices

Skylake

Unsorted

Sorted

Ginkgo

Good performance achieved on GPUs. Faster than Ginkgo on V100.



20 Conclusions

▶ We discussed main strategies for a performance portable batched sparse linear solver;

▶ We discussed the implementation of a batched SPMV and its performance;

▶ We briefly illustrate how kernels can be combined at the team level to write an efficient
solver;

▶ We briefly illustrate the performance of the batched GMRES on five different
architectures and the impact of the grouping.



21 Acknowledgment

▶ Ginkgo team: H. Anzt, A. Kashi, P. Nayak, et al.
Provided access to the Ginkgo source code for performance comparison of the batched
GMRES,

▶ SUNDIALS team: C. Balos, David G. , C. Woodward,
Provided batched matrices associated with chemical species in reacting Navier-Stokes
equations,

▶ M. Adams, Lawrence Berkeley Laboratory,

▶ This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science and National Nuclear
Security Administration, responsible for delivering a capable exascale ecosystem,
including software, applications, and hardware technology, to support the nation’s
exascale computing imperative.


