LA-UR-23-33846

Approved for public release; distribution is unlimited.

Title: Porting Eulerian Multiphysics Solver xRAGE to GPU-Capable C++

Author(s): Lyon, Dylan Scott

Intended for: Kokkos User Group Meeting 2023, 2023-12-12/2023-12-15 (Albuquerque, New Mexico, United States)

Issued: 2023-12-11

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 892

UNCLASSIFIED

Porting Eulerian Multiphysics Solver xRAGE to GPU-Capable C++

Student Talk

Dylan Lyon Kokkos Usergroup Meeting December 12-14, 2023

LA-UR-23-33846

Introduction

- B.S. Aerospace Engineering, University of Central Florida
	- Barnes-Hut n-body code, C++ w/ OpenMPI & OpenMP
	- Human body model, 1D "tree" FDM code, Matlab & C++
	- Architecture solids FEM code, Matlab & Julia w/ multithreading
- M.S. Mechanical Engineering, University of Michigan
	- Learned Kokkos at Masters level
- LANL Post-Masters Research Assistant
	- Eulerian Applications Group

UNCLASSIFIED cable stay lengths 12/14/2023

xRAGE Program Overview

- Finite volume multiphysics code
- Written in Fortran 90
- Used on many different architectures and clusters w/w/o GPUs

xRAGE Porting to C++

- New GPU clusters (Venado, Sierra)
- New Accelerated Computing Unit "APU" clusters (El Capitan)
	- Prototype rzVernal already operational

Takeaway:

- Want to take advantage of GPUs
- Avoid machine-specific xRAGE implementations
- **Use Kokkos**

xRAGE Porting Overview

Moving to C++ with Kokkos, one physics package at a time

xRAGE - Conduction Overview

- Heat transfer by particle collisions
- Conduction always performs local conduction solve:

Equation 1 - Local Heat Conduction

$$
\rho C_v \frac{\delta T}{\delta t} = \vec{\nabla} \cdot \left[\kappa \left(\rho, T \right) \vec{\nabla} T \right]
$$
\n(1)

xRAGE - Conduction Multigroup & Nonlocal

Local conduction diffs when simulating fast electrons in hot plasma

- Mean free path *λ* and therefore *κ* increase with electron energy
- **Multigroup:** Must solve conduction per electron energy group

Equation 2 - Electron Mean Free Path [3]

$$
\lambda_g = \frac{2}{\sqrt{1 + \langle Z \rangle}} \frac{(k_B \mathcal{E}_g)^2}{4 \pi n_e e^4 \ln(\Lambda)} \tag{2}
$$

Mean free path λ is on the order of temperature scale length *^T* **∇·***T*

Nonlocal: Must consider nonzero gradient lengths (Preheat)

xRAGE - Conduction Conduction Layout

Local conduction solve to get particle currents at faces \rightarrow Use currents as input to nonlocal multigroup model [5]

Three layers of iteration:

- *N* Time substeps OR energy conservation residual iterations
	- M Nonlocal flow convergence iterations
		- \Box *K* Electron energy groups, $\mathcal{O}(10)$

Leaving $N+1$ local matrix constructions and $(N+1) \times (M+1) \times K$ nonlocal matrix constructions per xRAGE timestep

Takeaway:

Speed Up Matrix Construction

UNCLASSIFIED 12/14/2023 | 8

xRAGE - Conduction Matrix Construction

Current implementation:

- Uses temporaries extensively
- Analog of the Fortran implementation

Current work:

• Reuse temporaries of same sizes

Future (potential) work:

- Use and reuse Kokkos::Experimental::ScatterViews
- Use memory pools to minimize malloc calls

UNCLASSIFIED

Scatter Views

UNCLASSIFIED 12/14/2023 | 10

Scatter Views Usage

Common patterns in Finite Volume codes:

- Cell-to-Face-to-Cell
	- 1. Interpolate cell-centered values to faces
	- 2. Perform operation at faces
	- 3. Use face values to get cell-centered value

Examples: Opacity across cells, advections

- Cell-to-Partition
	- 1. Reduce all cell values to one per-node value

Examples: Global energy conservation

Takeaway:

- 1. Both have data races
- 2. Widely varying concurrency
- 3. Thread read/write collisions depend on thread counts

Scatter Views Reduce Approaches

Scatter Views Overview

Kokkos::Experimental::ScatterView

- Automatic switching between **Kokkos:: Atomic** and data replication approaches
- Thread scalable at high thread counts
- No need to manually write data replication approach where high concurrency is *possible* [6]

UNCLASSIFIED

Scatter Views Example

Face Flow Reduce

```
1 // Original View to reduce
 2 Kokkos::View<double*> dflxeng( "dflxeng", numcells );
 3
 4 // Reusable ScatterView
 5 Kokkos::Experimental::ScatterView<ReductionExecSpace, double*> dflxeng_sv = ...
 6 Kokkos::Experimental::create_scatter_view( dflxeng );
 7
 8 // Scatter pattern kernel
9 Kokkos::parallel_for( "scatter_pattern_kernel",
10 Kokkos::RangePolicy<ReductionExecSpace> ( 0, numcells ),
11 KOKKOS_LAMBDA ( const size_t idx ) {
12 // Create "accessor" View.
13 // For atomic approach, will be atomic single address
14 // For replication approach, will be replicant View
        \frac{1}{2} auto dflxeng \frac{1}{2} access \frac{1}{2};
16
17 // Perform operation without data race
       dflxene access(idx) += max(face\ flow(face\ idx(idx)), 0.0);
19 }
20
21 // If using replication approach, perform the in-order reduction.
22 Kokkos::Experimental::contribute(dflxeng, dflxeng_sv);
```


UNCLASSIFIED 12/14/2023

Conclusion

- Porting strategy for xRAGE
- Approaches for accelerating Conduction matrix construction
- ScatterView, a Kokkos feature for fast scatter over any hardware

References I

- [1] Los Alamos National Laboratory, "LANL Applied Computer Science," (2021), [Online]. Available: [https://www.lanl.gov/org/ddste/aldsc/computer-computational](https://www.lanl.gov/org/ddste/aldsc/computer-computational-statistical-sciences/applied-computer-science/index.php)[statistical-sciences/applied-computer-science/index.php](https://www.lanl.gov/org/ddste/aldsc/computer-computational-statistical-sciences/applied-computer-science/index.php) (visited on 11/20/2023).
- [2] M. Gatu Johnson, B. Haines, P. Adrian, *et al.*, "3d xrage simulation of inertial confinement fusion implosion with imposed mode 2 laser drive asymmetry," *High Energy Density Physics*, vol. 36, p. 100 825, 2020, ISSN: 1574-1818. DOI: [https://doi.org/10.1016/j.hedp.2020.100825](https://doi.org/https://doi.org/10.1016/j.hedp.2020.100825). [Online]. Available: [https:](https://www.sciencedirect.com/science/article/pii/S1574181820300719)

[//www.sciencedirect.com/science/article/pii/S1574181820300719](https://www.sciencedirect.com/science/article/pii/S1574181820300719).

References II

- [3] G. P. Schurtz, P. D. Nicolaï, M. Busquet, "A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes," *Physics of Plasmas*, vol. 7, no. 10, pp. 4238–4249, Oct. 2000, ISSN: 1070-664X. DOI: [10.1063/1.1289512](https://doi.org/10.1063/1.1289512). eprint: [https://pubs.aip.org/aip/pop/article](https://pubs.aip.org/aip/pop/article-pdf/7/10/4238/12283913/4238_1_online.pdf)[pdf/7/10/4238/12283913/4238_1_online.pdf](https://pubs.aip.org/aip/pop/article-pdf/7/10/4238/12283913/4238_1_online.pdf). [Online]. Available: <https://doi.org/10.1063/1.1289512>.
- [4] E. H. Zhang, H. B. Cai, W. S. Zhang, *et al.*, "Influence of the electron thermal conduction and ion kinetic effects on the structure of collisional plasma shocks," *Physics of Plasmas*, vol. 29, no. 8, p. 082 110, Aug. 2022, ISSN: 1070-664X. DOI: [10.1063/5.0096988](https://doi.org/10.1063/5.0096988). eprint: [https://pubs.aip.org/aip/pop/article](https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0096988/16601615/082110_1_online.pdf)[pdf/doi/10.1063/5.0096988/16601615/082110_1_online.pdf](https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0096988/16601615/082110_1_online.pdf). [Online]. Available: <https://doi.org/10.1063/5.0096988>.

INCLASSIFIED

References III

- [5] D. Cao, G. Moses, J. Delettrez, "Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations," *Physics of Plasmas*, vol. 22, no. 8, p. 082 308, Aug. 2015, ISSN: 1070-664X. DOI: [10.1063/1.4928445](https://doi.org/10.1063/1.4928445). eprint: [https://pubs.aip.org/aip/pop/article](https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.4928445/15965787/082308_1_online.pdf)[pdf/doi/10.1063/1.4928445/15965787/082308_1_online.pdf](https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.4928445/15965787/082308_1_online.pdf). [Online]. Available: <https://doi.org/10.1063/1.4928445>.
- [6] H. Yu, Z. Dong, K. Knoepfel, M. Lin, B. Viren, K. Yu, "Evaluation of Portable Acceleration Solutions for LArTPC Simulation Using Wire-Cell Toolkit," in *Proceedings of CHEP 2021*, H. Yu, Z. Dong, K. Knoepfel, M. Lin, B. Viren, K. Yu, Eds., CERN, May 2021. [Online]. Available: <https://indico.cern.ch/event/948465/contributions/4323675/>.

UNCLASSIFIED