
Kokkos: State on Exascale Architectures

Daniel Arndt, Oak Ridge National Laboratory

Kokkos User Group Meeting 2023

December 12, 2023

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05- 00OR22725 with the U.S. Department of Energy. The United States

Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.



December 12, 2023 2/14

The HPC Hardware Landscape

Primary Programming Models: OpenMP, Cuda, HIP, SYCL

LANL Crossroads
Intel CPUs,

OpenMP, SYCL?

LBNL Perlmutter
AMD CPU, NVIDIA GPU

CUDA

ORNL Frontier
AMD CPU, AMD GPU

HIP

ANL Aurora
Intel CPUs, Intel GPUs

SYCL

LLNL El Capitan
AMD CPU, AMD GPU

HIP



December 12, 2023 3/14

NVIDIA GPUs/CUDA

Supercomputer

▶ Summit(ORNL)

▶ Perlmutter(LBNL)

▶ Sierra(LLNL)

▶ Polaris(ANL)

Minimum version Cuda 11.0.0.

cmake ..\

-DCMAKE_CXX_COMPILER =* \

-DKokkos_ENABLE_CUDA=ON \

-DKokkos_ARCH_NATIVE=ON \

-DKokkos_ARCH_AMPERE80=ON

▶ Without compiler wrapper, clang++ or nvcc wrapper must be used.

▶ nvhpc only used as host compiler by default.



December 12, 2023 4/14

Cuda: Performance, A100

Results from bytes and flops(TeamPolicy)1

scalar Bandwidth Compute Cache

float 1251 GiB/s 14280 GFlop/s 3762 GiB/s

double 1267 GiB/s 7592 GFlop/s 6938 GiB/s

int32 t 1222 GiB/s 18457 GFlop/s 4684 GiB/s

int64 t 1267 GiB/s 3778 GFlop/s 6895 GiB/s

▶ Peak FP64 Vector: 19.5 TFLOPS

▶ Memory Bandwidth: 1.6 TB/sec

▶ Cache Size: L1/L2: 192KB (per SM)/40 MB

1This research used resources of the Argonne Leadership Computing Facility, a U.S. Department of Energy
(DOE) Office of Science user facility at Argonne National Laboratory and is based on research supported by the
U.S. DOE Office of Science-Advanced Scientific Computing Research Program, under Contract No.
DE-AC02-06CH11357.



December 12, 2023 5/14

AMD GPUs/HIP

Supercomputer

▶ Frontier(ORNL)

▶ El Capitan(LLNL)

Unsupported features

▶ Tasks

Minimum version ROCm 5.2.0.

cmake ..\

-DCMAKE_CXX_COMPILER=hipcc \

-DKokkos_ENABLE_HIP=ON \

-DKokkos_ARCH_NATIVE=ON \

-DKokkos_ARCH_AMD_GFX90A=ON



December 12, 2023 6/14

HIP: Performance MI250, one GCD

Results from bytes and flops (TeamPolicy)2

scalar Bandwidth Compute Cache

float 1160 GiB/s 20544 GFlop/s 2756 GiB/s

double 1140 GiB/s 19320 GFlop/s 2883 GiB/s

int32 t 1150 GiB/s 20194 GFlop/s 2757 GiB/s

int64 t 1140 GiB/s 4979 GFlop/s 2865 GiB/s

▶ Peak FP64 Vector: 23.95 TFLOPS

▶ Memory Bandwidth: 1.6 TB/sec

▶ Cache Size: L1/L2: 16KB (per CU)/16 MB

2This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.



December 12, 2023 7/14

HIP: Caveats

When using HIPManagedSpace, the memory migrates between the CPU and the GPU
if:

▶ the hardware supports it and

▶ the kernel was compiled to support page migration and

▶ the environment variable HSA XNACK is set to 1

L1 cache much smaller than on other GPUs. Decreasing memory usage via Enabling
Kokkos ENABLE HIP MULTIPLE KERNEL INSTANTIATIONS might improve performance
but increases compilation time.

Using -munsafe-fp-atomics forces hardware-based floating-point atomics (no
synchronization across kernels).



December 12, 2023 8/14

Intel GPUs/SYCL

Supercomputer

▶ Aurora(ANL)

Unsupported features

▶ WorkGraphPolicy

▶ Tasks

▶ Graphs (dummy implementation)

▶ Virtual functions/function pointer
https://github.com/intel/llvm/pull/10540

▶ ::printf → Kokkos::printf

https://github.com/intel/llvm/pull/10540


December 12, 2023 9/14

SYCL: CMake Configuration

cmake ..\

-DCMAKE_CXX_COMPILER=icpx \

-DKokkos_ENABLE_SYCL=ON \

-DKokkos_ARCH_NATIVE=ON \

-DKokkos_ARCH_INTEL_PVC=ON

▶ Replace last line with -DKokkos_ARCH_INTEL_GEN=ON for JIT compilation.

▶ Minimum version oneAPI 2023.0.0.



December 12, 2023 10/14

SYCL: Performance Intel Data Center GPU Max 1550, one tile

Results from bytes and flops(TeamPolicy)3

scalar Bandwidth Compute Cache

float 1002 GiB/s 17484 GFlop/s 4973 GiB/s

double 960 GiB/s 8746 GFlop/s 6928 GiB/s

int32 t 1007 GiB/s 6108 GFlop/s 4714 GiB/s

int64 t 958 GiB/s 982 GFlop/s 4715 GiB/s

▶ Peak FP64 Vector: 22.9 TFLOPS/tile

▶ Memory Bandwidth: 1.6 TB/sec/tile

▶ Cache Size: 128KB (per work group)/408 MB

3This research used resources of the Argonne Leadership Computing Facility, a U.S. Department of Energy
(DOE) Office of Science user facility at Argonne National Laboratory and is based on research supported by the
U.S. DOE Office of Science-Advanced Scientific Computing Research Program, under Contract No.
DE-AC02-06CH11357.



December 12, 2023 11/14

SYCL: Optimizing workgroup size

For Kokkos::RangePolicy with Kokkos:parallel for, the workgroup size can be manually
specified:

Kokkos :: parallel_for(

Kokkos :: RangePolicy <ExecutionSpace >(space , 0, N)

.set_chunk_size (1024) ,

*this);

The subgroup size can be forced via

export IGC_ForceOCLSIMDWidth =32

or as compiler flag

-fsycl -default -sub -group -size =32

Also, see https://github.com/kokkos/kokkos/pull/6496, that would allow

Kokkos :: RangePolicy <ExecSpace , Kokkos :: SubGroupSize <16>>

https://github.com/kokkos/kokkos/pull/6496


December 12, 2023 12/14

SYCL: More optimizations I

Larger amount of registers can be requested via

export SYCL_PROGRAM_COMPILE_OPTIONS =\

"-ze-opt -large -register -file"

or as compiler flag

-Xs "-options␣-ze-opt -large -register -file"

useful if there are spills

[...] compiled SIMD32 allocated 128 regs and spilled around 4



December 12, 2023 13/14

SYCL: More optimizations II

Using https://github.com/kokkos/kokkos/pull/5879 allows specifying the
scratch level at compile-time and helps with

[...] warning: Adding 4 occurrences of additional control flow due to presence
of generic address space operations

Multidimensional View access produces poor assembly. Replace

for (int i=0; i<N; ++i)

view(i,3,10) = ...;

with

auto stride = view.stride (0);

auto view_ptr = &view (0,3,10);

for (int i=0; i<N; ++i, view_ptr += stride)

*view_ptr = ...;

https://github.com/kokkos/kokkos/pull/5879


December 12, 2023 14/14

Questions?


	Cuda
	HIP
	SYCL

