
Kokkos and MLIR

Brian Kelley and Kim Liegeois, Sandia National Laboratories

Kokkos User Group Meeting 2023

December 12, 2023

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2023-14543C

December 12, 2023 2/24

Introduction

December 12, 2023 3/24

Introduction

I MLIR

I Why MLIR is useful to the Kokkos ecosystem

I Previous Work

I Examples: ResNet18 and SpMV

I Ongoing Work

I Conclusion

December 12, 2023 4/24

Overview

December 12, 2023 5/24

MLIR

I MLIR: Multi-Level Intermediate Representation

I Part of the LLVM project

I Like LLVM IR, an SSA language designed to be automatically analyzed and
optimized by a compiler

I Unlike LLVM, includes high-level operations, e.g. matrix multiplication

I Operations organized into families called dialects

December 12, 2023 6/24

MLIR

I Some built-in dialects, higher to lower level:
I linalg: high-level tensor, matrix and vector operations
I scf: structured control flow: parallel loops, if, while
I memref: allocate and access multidimensional arrays
I gpu: heterogeneous memory and GPU kernels in a CUDA-like model
I llvm: LLVM IR instructions (making MLIR a superset of LLVM)

I MLIR includes passes which analyze and transform a program
I Lowering: convert high-level operation(s) to lower-level equivalent
I Optimizing: e.g. loop fusion, tiling, strength reduction...

I Users can also create their own dialects and passes

December 12, 2023 7/24

Motivation

December 12, 2023 8/24

Motivation

Why bring Kokkos and MLIR together?
I Interfacing between Python ML frameworks (PyTorch etc.) and Kokkos C++

HPC codes
I Direct interfacing: increased developer effort, and introduced dependencies on

Python packages
I Instead, MLIR can be used to automatically generate C++ source code from Python

ML models. Integrate this into Kokkos-based HPC codes.

December 12, 2023 9/24

Motivation

Why bring Kokkos and MLIR together?
I Automation of tedious programming tasks

I Host-device memory migration
I Parameter search and autotuning
I Overlapping of independent computations using execution space instances

December 12, 2023 10/24

Previous Work

December 12, 2023 11/24

Previous Work

I torch-mlir: external open-source project that compiles PyTorch models to MLIR
I Includes end-to-end infrastructure to compile, load and run a model within Python

I Kokkos → MLIR emitter: 2022 exploratory project at Sandia
I Project investigated whether MLIR was a suitable interface between Kokkos and

machine learning frameworks
I Emitter generates Kokkos C++ source code from MLIR program with mid-level

dialects
I Successfully emitted ResNet18 pre-trained model, then compiled and ran with CUDA

backend

I Sparse tensor dialect
I Effort led by Dr. Aart Bik (Google) to add first-class sparse tensor support to MLIR
I Describe tensor formats and layouts at high level: CRS, block structure,

doubly-compressed dimensions, etc.
I Parallel code generation from high-level linalg operations

December 12, 2023 12/24

Examples

December 12, 2023 13/24

ResNet18 Example

I ResNet18 (CNN image classifier) end-to-end example.

I Begin with pre-trained PyTorch model:

ResNet(

(conv1): Conv2d(3, 64, ...)

(bn1): BatchNorm2d(64, ...)

(relu): ReLU(inplace=True)

(maxpool): MaxPool2d(kernel_size=3, ...)

(layer1): Sequential(...)

...

December 12, 2023 14/24

ResNet18 Example

I Use torch-mlir to generate high-level MLIR

I All weights arrays are included in the MLIR as constant memrefs

I Then use built-in passes to lower to mid-level dialects

I These dialects most closely match Kokkos’s level of abstraction

December 12, 2023 15/24

ResNet18 Example

I %N: an SSA value (the result of an operation)

I scf.parallel: parallel N-dimensional loop

I memref.load: read a value from an array

I arith.divf: floating point division

scf.parallel (%arg1, %arg2, %arg3, ...) {

%249 = memref.load %224[%arg1, %arg2]

%250 = arith.divf %249, %cst : f32

memref.store %250, %225[%arg1, ...]

scf.yield

}

December 12, 2023 16/24

ResNet18 Example

I Use the Kokkos emitter to generate C++ code, one operation at a time

Kokkos::parallel_for(Kokkos::MDRangePolicy<

exec_space, Kokkos::Rank<4>>(...),

KOKKOS_LAMBDA(int64_t unit_v1255, int64_t ...)

{

int64_t v1255 = v10 + unit_v1255 * v7;

int64_t v1256 = v10 + unit_v1256 * v7;

int64_t v1257 = v10 + unit_v1257 * v7;

int64_t v1258 = v10 + unit_v1258 * v7;

float v1259 = v249(v1255, v1256);

float v1260 = v1259 / v2;

...

December 12, 2023 17/24

ResNet18 Example

I Compile the C++ code to a shared library, with Kokkos linked in

I Load the library into Python with CTypes, and run model inference

December 12, 2023 18/24

ResNet18 Example

I Or, use the C++ code directly from an existing Kokkos program

I Takes image as input (RGB, 224× 224) and returns probability vector (1000
classes)

// mlir_kokkos_module.cpp

Kokkos::View<float[1][1000], Kokkos::LayoutRight>

forward(Kokkos::View<float[1][3][224][224], Kokkos::LayoutRight> v1) {

...

}

December 12, 2023 19/24

SpMV Example

I Use PyTACO (included with MLIR) to express tensor formats and computation

I Use sparse tensor dialect to generate parallel sparse matrix times vector kernel

A = pt.tensor([5, 5], [pt.dense, pt.compressed], dtype=pt.float64)

b = pt.tensor([A.shape[1]], [pt.dense], dtype=pt.float64)

c = pt.tensor([A.shape[0]], [pt.dense], dtype=pt.float64)

fill A and b...

i, j = pt.get_index_vars(2)

c[i] = A[i,j] * b[j]

December 12, 2023 20/24

SpMV Example

I Apply sparse tensor lowering pipeline

I Use Kokkos emitter to generate kernel with two-level parallelism

December 12, 2023 21/24

Ongoing and Future Work

December 12, 2023 22/24

Ongoing and Future Work

I Tensor partitioning and distributed computations
I We have a prototype partition dialect
I Can express a 2D block distributed SpMV now

I Use partitioning infrastructure to target spatial dataflow accelerators
I These systems have many small processors in a grid, with fast communication

between neighbors
I Want to distribute sparse tensors and computations over processors
I Have successfully run SpMV kernel on NextSilicon Maverick using OpenMP

programming model

I Automatic differentiation at the MLIR level

December 12, 2023 23/24

Conclusion

December 12, 2023 24/24

Conclusion

I MLIR can express ML and HPC programs at varying levels of abstraction

I Transformations can exploit high-level information that would not be available to
a conventional C++ compiler

I We are developing tools with MLIR to benefit HPC use cases:
I MLIR → Kokkos C++ emitter: convert MLIR to portable Kokkos-based source code
I Partition dialect: support tiled and distributed sparse tensors
I Target novel spatial dataflow accelerators

I Thank you! Any questions?

	Introduction
	Overview
	Motivation
	Previous Work
	Examples
	Ongoing and Future Work
	Conclusion

