
Approved for public release

High-Performance GMRES Mixed-Precision (HPG-MxP) Benchmark
 with Kokkos-Kernels backend

Ichitaro Yamazaki, Jennifer Loe, Christian Glusa, Siva Rajamanickam (Sandia National Labs)
Piotr Luszczek, and Jack Dongarra (University of Tennessee, Knoxville)

Kokkos User Group (KUG) Meeting
Albuquerque, New Mexico, 2023-12-12

2

Goal & Motivations

• HPG-MxP is designed to

• capture typical performance of “real” applications
• Consist of kernels found commonly in these applications

• allow the use of mixed precision arithmetic

• It’s a mix of HPCG and HPL-MxP

• Some current & emerging HP computers can perform
lower precision arithmetic at higher performance

• Some emerging accelerators may not support double precision

• Lower precision reduces the data transfer volume and
may improve application performance

• Application performance is often limited by communication
 (latency or bandwidth)

• Such benchmark may be of interests to many decilplines

GPU Peak Performance
(Tflop/s)

System GPU FP64 FP32 FP16

Frontier (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Summit (ORNL) NVIDIA V100 7.5 19.5 N/A

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

3

• Mixed-precision Iterative refinement to solve a sparse linear system
– Lower-precision may be used to solve the sparse linear system

• GMRES to provide the robustness
– GMG preconditioner + GS smoother

• Typically dominates benchmark time

– Iterative refinement to obtain the double-precision solution
– How much speedup can we get using lower-precision for

communication-bound operations?
– Benchmark result is penalized if lower-precision increases the

iteration count

HP GMRES Mixed-Precision (HPG-MxP)

Dense Problem
Compute Intensive

Sparse Problem
Compute/Comm pattern

in “Real” Appls

Uniform
Precision

HPL HPCG

Mixed Precision HPL-MxP HPG-MxP

Refinement in double precision

GMRES in lower precision

4

Mixed-precision GMRES – Iterative Refinement
for solving sparse non-symmetric linear system

• Generalized Minimum Residual (GMRES)
– A popular Krylov method for solving a non-symmetric system

– It computes an approximate solution minimizes the residual norm
in the computed Krylov projection subspace

• Mixed-precision variant
– is also a well-established algorithm

– Growing interests, with lots of numerical theories
and performance studies, in recent years

1) P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Five-precision
GMRES- based iterative refinement. 2021.

2) P. Amestoy, A. Buttari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Combining sparse
approximate factorizations with mixed precision iterative refinement. Technical report, The
University of Manchester, 2022.

3) E. Carson and N. Higham. Accelerating the Solution of Linear Systems by Iterative
Refinement in Three Precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

4) S. Gratton, E. Simon, D. Titley-Pe ́loquin, and P. Toint. Exploiting variable precision in
GMRES. ArXiv, abs/1907.10550, 2019

5) N. Lindquist, P. Luszczek, and J. Dongarra. Improving the Performance of the GMRES
Method using Mixed-Precision Techniques. in Smoky Mountains Conference Proceedings,
2020.

6) J. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman, and S. Rajaman- ickam. Experimental
evaluation of multiprecision strategies for GMRES on gpus. In 2021 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 469–478,
2021.

7) K. Turner and H. Walker. Efficient high accuracy solutions with GMRES(m). SIAM J. Sci.
Stat. Comput., 13(3):815–825, 1992.

8) Etc. etc.

Also, mixed-precigion MG:

1) S. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-precision
multigrid solvers. SIAM J. Sci. Comp., 43(5):S392–S419, 2021.

5

HPG-MxP: Main tasks

1. Sparse Matrix Vector Multiply (SpMV)

• Point-to-point neighborhood communication (halo exchange)

• Exchange 1, nx, or nx2 elements with 7 ~ 26 neighbors

• Local SpMV with 27-pts stencil

• 54nm Flops / restart

2. Orthogonalization based on Classical Gram Schmidt
with reorthogonalization (CGS2)

• Blas-2 dense matrix-vector dot-product, local atomic and global reduce

• Total of 2n(1+m)m Flops / Restart

• Blas-2 dense matrix-vector update, embarrassingly parallel

• Total of 2n(1+m)m Flops / Restart

3. Geometric Multi Grid (GMG)

• Four level with 23x smaller coarse grid

• One forward-sweep of Gauss-Seidel (GS) as pre &
post smoother

• Halo-exchange, Local SpTRSV

• Total of 2*(54*73)/64 nm Flops / Restart

• Residual vector computation

• Halo-exchange, Local SpMV

• Total of 2*(54*73)/64 nm Flops / Restart

• Restriction & Prolongation operators

• No communication, Local SpMV with a rectangular
matrix,
e.g., one nonzero per row

• One forward sweep of GS at the final coarse level.

• Halo-exchange, Local SpTRSV

• Total 81 / 512 nm Flops / Restart

Mixture of sparse and dense operations,
commonly found in real applications
• With m = 40, about same number of flops for GMG and CGS2

Same kernels as HPCG,
except for CGS2

6

HPG-MxP reference implementation

• The reference implementaFon (solver & benchmark suite) is available

• hOps://github.com/iyamazaki/hpcg

• It is meant to be opRmized by parRcipants

• It reuses many of HPCG components

• It is based on C++ template

• To make it easier to use various precision

• It also provides CUDA/HIP backends

• It uses GPUs to generate basis vectors,
while the Rny least square problem is solved redundantly on each CPU.

• It uses MPI for data exchange, while solely rely on vendor libraries for the GPU computaRon

• CuBLAS and CuSparse on NVIDIA and RocBLAS and RocSparse on AMD

• GS uses general SpMV & SpTRSV

• Minimum CUDA/HIP code

• Gather for MPI P2P communicaNon

• If the vector needs to be casted, then it is done on a CPU (no mixed-precision kernels)

https://github.com/iyamazaki/hpcg

7

Performance studies of reference implementation : Experimental setups
 to motivate Kokkos-Kernels backend

• Test machines

• Summit (OLCF)
• Each node with 2×22-core Power9 CPUs and six NVIDIA V100 GPUs

• Frontier (OLCF)
• Each node with 1×64-core AMD EPYC CPUs and four AMD MI250X GPUs

• Perlmutter (NERSC)
• Each node with 1×64-core AMD EPYC CPUs and four NVIDIA A100 GPUs

• Weak-scaling

• a fixed problem size per MPI (one MPI / CPU core or GPU)

• Using single-precision for GMRES iterations

• 2.0x reduction in dense matrix storage

• 1.6x reduction in sparse matrix storage

• Performance of the reference implementation

• Meant to motivate interests

Some of the parameter values are
selected for convenience.

8

Performance of reference implementation on Summit
 IBM Power9 CPUs + NVIDIA V100 GPUs

• Speedup of 1.2x using a non-opFmized reference

• Most of the solver Fme is spent in SpTRSV for GMG

• It has limited parallelism, and
its performance may be more dominated by latency

• it is harder to get speedup using lower precision

• Reference implementaRon uses CuSparse SpMV & SpTRSV
(no coloring)

Time in seconds with GPUs TFlop/s with GPUs

GMG SpMV CGS2 Total GMG SpMV CGS2 Total

Uniform 51.5 3.8 2.5 60.2 0.30 1.20 4.13 0.50

Mixed 44.5 2.4 1.8 50.1 0.35 1.87 5.73 0.61

Speedup 1.16 1.56 1.39 1.20 1.15 1.56 1.39 1.20

Performance on 8 Summit nodes with GPUs
(about same total # of flops for GMG or CGS2)

9

Performance of reference implementation on Frontier (at larger scale)
 AMD EPYC CPUs + AMD MI250X GPUs

• Speedups, similar to those on Summit
• AMD MI250X GPU on Frontier has same peak compute performance using double and single

• Peak 530-1600 Gflop/s for Ortho and 450-1100 Gflop/s for SpMV (800 GB/s)
• 14 PFlop/s HPCG on Frontier

• SpMV (with P2P) seems to scale better than Ortho (all-reduce)

10

• Kokkos-Kernels backends
– Optimized version of GS (e.g., coloring) [Devici’16, Kelley’22]

• TPL to vendor BLAS/Sparse kernels

• Reference spends most of time in GS

• KK GS may get closer to SpMV on big enough matrix?

– Mixed-precision operations, including FP16 or BF16
• Reference explicitly type-casts (on host) before uniform-precision kernels

– Portable implementation of LA ops on different node architectures
• FP16/BF16 supports on host.

HPG-MxP with Kokkos-Kernels backend (as an “optimized” implementation)

Special thanks to Kokkos-Kernels team,
 Brian Kelley, Evan Harvey, and Vinh Dang

GPU Peak Performance
(Tflop/s)

System GPU FP64 FP32 FP16

Crusher (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0

11

• using FP16 did help reducing the iteration time
– Performance & speedup still dominated by GS

– We used clustered GS from Kokkos-Kernels

– Iteration count went up, and benchmark results were
25x slower using FP16

Performance (time / iteration) using FP16 on Perlmutter (Four NVIDIA A100 GPUs / node)
 using mixed-precision FP16/FP32 KK interface (FP16 for GMRES iterations, but accumulations are stored in FP32)

Time in milliseconds / iter GFlop/s Speedup
GMG SpMV CGS Total GMG SpMV CGS Total GMG SpMV CGS Total

Fp64 8.80 0.67 3.88 13.4 42.3 162.1 64.9 55.1 -- -- -- --

Fp64/32 8.11 0.47 3.55 12.1 45.8 232.6 71.0 60.7 1.08 1.43 1.09 1.10
Fp64/16 8.02 0.40 3.04 11.5 46.4 274.4 82.7 64.2 1.10 1.69 1.27 1.17

Performance on one Perlmutter node with GPUs
(about same total # of flops for GMG or CGS2)

12

Final remarks

• Kokkos-Kernels backend for HPG-MxP
– Optimized GS, mixed-precision interface, and portable kernels

– Looking at performance on current HPC system (Frontier, Perlmutter, and maybe Aurora)
• GS performance and speedups

• Potential of BF16/FP16 precision
– Store just matrices in FP16 for GS

Thank you !!

13

Acknowledgments

• This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration. Sandia
National Laboratories is a multimssion laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. This paper describes objective technical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

14

Discussion

