BENCHMARKING PORTABLE STAGGERED FERMION KERNEL WRITTEN IN KOKKOS AND MPI¹ KOKKOS USER GROUP MEETING 2023

12th December, 2023 | Simon Schlepphorst | Jülich Supercomputing Centre

¹DOI: 10.1145/3624062.3624179

Member of the Helmholtz Association

Staggered fermions

staggered fermionic action

$$S_{F} = a^{4} \sum_{n \in \Lambda} \bar{X}(n) \left(\sum_{\mu=1}^{4} \eta_{\mu}(n) \frac{U_{\mu}(n)X(n+\hat{\mu}) - U_{\mu}^{\dagger}(n-\hat{\mu})X(n-\hat{\mu})}{2a} + mX(n) \right)$$

- space-time coordinates $n = (n_1, n_2, n_3, n_4)$ separated by a lattice spacing *a*
- and $U_{\!\mu}\in {f C}^{3 imes 3}$, $X\in {f C}^3$
- with direction index μ
- required dimensions for naive layout [n₁][n₂][n₃][n₄][4][3][3][2]
- using $L = n_1 = n_2 = n_3$, $T = n_4$ and L = T for convenience

Staggered fermions

staggered fermionic action

$$S_{F} = a^{4} \sum_{n \in \Lambda} \bar{X}(n) \left(\sum_{\mu=1}^{4} \eta_{\mu}(n) \frac{U_{\mu}(n)X(n+\hat{\mu}) - U_{\mu}^{\dagger}(n-\hat{\mu})X(n-\hat{\mu})}{2a} + mX(n) \right)$$

arithmetic intensity (for 32-bit floating point numbers)

$$I = \frac{570 \text{ FLOP}}{792 \text{ B}} = 0.72 \text{ FLOP/B}.$$

Member of the Helmholtz Association

12th December, 2023

Implementation in Kokkos and MPI

Data Layout

using complex_t = Kokkos::complex<float>; using Vector_t = Kokkos::View<complex_t ****[3]>; using Link_t = Kokkos::View<complex_t ****[4][3][3]>;

use in place buffer for computation

$$L^3 \cdot T = 32^4$$

 $\begin{array}{l} \textbf{Vector}_{t} \; Y(34,34,34,34); \\ \textbf{Vector}_{t} \; X(34,34,34,34); \\ \textbf{Link}_{t} \; U(33,33,33,33); \end{array}$

- and additional continuous buffer for communication with MPI
- apply local periodic boundary conditions by recalculating the site indices

Implementation in Kokkos and MPI

different execution spaces for bulk and halo

Execution Spaces

using BulkSpace_t = Kokkos::DefaultExecutionSpace; **using** HaloSpace_t = Kokkos::DefaultExecutionSpace;

BulkSpace_t BulkExecSpace = BulkSpace_t(); HaloSpace_t HaloExecSpcae = HaloSpace_t();

simple MDRange

Execution Policy

 $\label{eq:autopb} \begin{array}{l} \textbf{auto} \ PB = Kokkos::MDRangePolicy < Kokkos::Rank < 4 >> (BulkSpace, \{1,1,1,1\}, \{33,33,33,33\}); \\ \textbf{auto} \ PH = Kokkos::MDRangePolicy < Kokkos::Rank < 4 >> (HaloSpace, \{1,1,1,1\}, \{2,33,33,33\}); \\ \end{array}$

Implementation in Kokkos and MPI

Kernel Algorithm (Input: U, X Output: Y)

```
\begin{array}{l} n \in \Lambda \\ \text{for } i \leftarrow 1, 2, 3 \text{ do} \\ t \leftarrow 0 \\ \text{for } j \leftarrow 1, 2, 3 \text{ do} \\ \text{for } \mu \leftarrow 1, 2, 3, 4 \text{ do} \\ t \leftarrow t + U_{\mu}(n)_{ij} * X(p(n + \hat{\mu}))_j \\ t \leftarrow t - U_{\mu}^*(p(n - \hat{\mu}))_{ji} * X(p(n - \hat{\mu}))_j \\ \text{end for} \\ \text{end for} \\ Y_i \leftarrow t \\ \text{end for} \end{array}
```

p() calculates the correct n according to periodic boundaries

AMD Ryzen 7742 (x86 CPU, Dual Socket) Stream Triad

AMD Ryzen 7742 (x86 CPU, Dual Socket)

Staggered

JURECA @ JSC, Kokkos 3.6, AOCC 3.2, Clang 13.0, GCC 11.2

Fujitsu A64FX (ARM CPU)

Stream Triad

Fujitsu A64FX (ARM CPU)

Staggered

CTE-ARM @ BSC, Kokkos 3.6, GCC 11.1, Clang 14.0

Nvidia A100, H100 and AMD MI250 (GPU)

Stream Triad

12th December, 2023

Nvidia A100, H100 and AMD MI250 (GPU)

Staggered

A100: JURECA @ JSC, Kokkos 4.0.1, GCC 11.3, CUDA 11.7, OpenMPI 4.1.4, LB 384,1 H100: JURECA Evaluation Platform @ JSC, Kokkos 4.0.1, GCC 11.3, CUDA 12.0, OpenMPI 4.1.4, LB 384,1 MI250: JURECA Evaluation Platform @ JSC, Kokkos 4.0.1, Clang 15, ROCm 5.4, OpenMPI 4.1.4

12th December, 2023

Nvidia A100, H100 and AMD MI250 (GPU) Staggered

12th December, 2023

Slide 12112

JÜLICH SUPERCOMPUTING CENTRE

Forschungszentrum

END Thank you for your attention!

Member of the Helmholtz Association