1% Los Alamos

NATIONAL LABORATORY

Kokkos Usage in xRAGE

Peter Maginot- EAP DPL for Physics
with Daniel Holladay, Zach Medin, Clell (CJ) Solomon

Kokkos User Group Meeting, December 12-15, 2023
LA-UR-23-33701

12/13/23 1

Outline

What is xRAGE

Porting history/strategy
FY24 plans

Kokkos usage within grey diffusion

AAAAAAAAAAAAAAAAAA

12/13/23 2

xRAGE is a large LANL ASC multiphysics code
* Mostly Fortran 90/95

« O(500K) lines

« Large number of internal users
— Their day job is to run xXRAGE

« O(15-20) developers

« Extensive validation basis

« MPI domain decomposition for parallelism

» Expected to run [performantly] on all large NNSA HPC systems

» Geared toward high energy density applications (NIF, Omega, Z experiments)

— But still has “cold” physics for HE burn, material strength, etc..

Interested in Kokkos for GPU porting because code

base is too large to maintain multiple code paths

XRAGE targeting of GPUs has not been steady

 Significant work in FY19 and FY20
— Focus on inter-operatbility, FLCL, DualView
— Start porting physics [folders]

* Impediments
- COVID

— Unilateral decision to stop porting
— LANL ASC re-organization, EAP re-organization
— Staff departures (Classification Office, Industry, Other projects — Industry)

* Resumption in late FY22 through Today
— Focus on verifying / demonstrating GPU performance of ported packages

We are not where we could be, but we have a

consistent vision and plan to move forward!

Each ported xRAGE physics currently responsible for
migrating data to and from the GPU

« The above also implies, “from Fortran to C++”. Currently:

1.

B W N

S.

Break apart Fortran derived types into component arrays and scalar
Convert arrays into flcl_ndarry t objects

Cross the Fortran/C barrier

Convert flcl_ndarry t* objects into Host Views

Transfer Host Views to Device Views

« Very manual, very large function signatures

« FLCL has caused some tricky to find issues
- FLCL::HostSpace not really HostSpace (it's CudaUVM)
— Correctness of taking a Fortran allocated array and assuming it is in CudaUVM space?
- flcl_ndarray_t have served their purpose, but new options exist

NS
‘:9 Los Alamos

AAAAAAAA

FY23 was “Year of the Machine” FY24 will be xXRAGE’s
“Year of the GPUs”

» Unsplit hydrodynamics, conduction, high explosives reactive burn, multigroup
radiation diffusion to be ported
— LANL is getting serious since impending Venado and El Cap hardware deliveries
suggest GPUs are not going to go away
* Removing FLCL dependency
- XRAGE mixed compiler build + availability of “newer” GNU compilers on Sierra
- XRAGE will make use of F2018 “C Descriptors” to replace flcl_ndarray t

« Streamline steps from Fortran derived types to GPU Views
— Maintain historical hierarchy of derived type data
- Consistent method to auto-generate Fortran to C interoperable structs then transform

» Most developers will write a single Python file per Fortran derived type

= CMake will run Python files to 1) auto-generate interoperable structs definitions and 2) C++
transforms to get from C descriptors to Views

1% Los Alamos

AAAAAAAAAAAAAAAA

[Grey] radiation diffusion is our most ported physics
« Amongst the original three “physics” packages [folders] identified in 2018

« Three pieces for complete grey diffusion solve
- Opacity (data) lookup
— Matrix setup
— Matrix solve

« Matrix setup is effectively the piece of XRAGE physics we can control
— Results suggest we might wish to consider controlling more pieces

« Since it was most ported, radiation diffusion has been our Kokkos testing ground
- What features of Kokkos might we want to use for performance?
— Allows us to explore how do multiple GPU chefs in the kitchen work?

» XRAGE Kokkos, CUDA Fortran, CUDA C, TPLs that use Kokkos all must build and link together in
harmony

1% Los Alamos

AAAAAAAAAAAAAAAA

Despite following later, xRAGE is experiencing much of
others’ progression in performance

700 A

600 -

W
o
o

Time [sec]
>
o
o

W
o
o

200 A

100 A

1% Los Alamos

NATIONAL LABORATORY

42.6 43.9

40.1 37.0 29,1

- MatrixSolution

- Opacity

- MatrixSetup

CPU
36-CTS
40-P9
4-P9
4-P9
4-P9
4-P9
4-P9
4-P9
4-P9
4-P9
36-CTS
36-CTS

Improvement
Legacy Fortran
C++ (forAllFaces)
no MPS
forAllFaceType
lag opacity
hypre 2.26 (bad settings)
partition_space streams
cudaMallocAsync
hypre 2.26 (better settings)
unmanaged memory
Final C++ (lag opacity)
Final C++ (no opacity lagging)

Focusing on what we are actually speeding up paints a
fairer picture

84.5

60 B vatrixsetup CPU Improvement

A 36-CTS Legacy Fortran
B 40-P9 GPU + MPS

i C 4-P9 no MPS

E D 4-P9 forAllFaceType splitting
G 4-P9 partition_space streams
H 4-P9 cudaMallocAsync
] 4-P9 unmanaged memory

Modification

We can achieve modest speed-up of a low FLOP, high data transfer

routine via code re-writing and less common Kokkos strategies.

—~_
1% Los Alamos

XRAGE iteration over faces needed to evolve for GPUs

» Faces in XRAGE are categorized by Fortran Iteration Pattern
type and facing direction o dimel numdin
1. Lo boundary do loop=1, n_types_of_faces(dim)
2. Hiboundary face_type = face_id(loop,dim)
. . if face_type ==
3. Interior at 1:1 interface n_lo = ¥§Ce_10(100p,dim)
4. Interior fine [lo] / coarse [hi] n_hi = face_hi(loop,dim)
. . . do n=n_lo,ni
5. Interior coarse [hi] / fine [lo] cell_hi = face_local(n,HI,dim)
« Face-based data stored in 2-D arrays acedataln,din) = funcldatalcell_hi))
— Global face index not a concept else if face_type ==
. . . . l LI B] i i
~ Indexed within a dimension ' omitted for brevity
— <10% over allocation (maxint*numdim) enddo

enddo

maxint = max(max_f x, max_f y, max f z)

Natively would require 15 kernel launches!

1% Los Alamos

AAAAAAAAAAAAAAAA

Radiation diffusion first unrolled common pattern once
and created auxiliary iteration structures

* Did not collect timing data prior to
transition
— Code did not work on GPUs prior to parallel_for("calc_a_thing",

forAllFaces Iteration Pattern

a MR that did too many things © RangePolicy<EXEC_SPACE>(0@,f_idata.n_faces_tot),
KOKKOS_LAMBDA (const size_t f_idx) {
* Pros cell_lo = f_data.cell_lo_of_face(f_idx);
— Sinale kernel launch cell_hi = f_data.cell_hi_of_face(f_idx);
9 face_type = f_data.type_of_face(f_idx);
— Logical “forAllFaces” of a Fortran dim = f_data.dim_of_face(f_idx);
pattern idx = f_data.idx_of_face(f_idx);
if (face_type == 2){
e Cons: face_data(n,dim) = func(data(cell_lo))
: }
~ Increased memory footprlnt // ... omit other face_types for brevity

- Retains face type checking logic

— Atomics needed for reductions to cell
data

1% Los Alamos

AAAAAAAAAAAAAAAA

forAllFaces has been split into 3 separate kernel launches

o , _ forAllFaceTypes lteration Pattern
« Eliminated if checking

— FacelterationData doubles in memory footprint

parallel_for("calc_a_thing_interior",
RangePolicy<EXEC_SPACE>

e Small | n low ' (streams[0],0,f _idata.n_faces_int),
Small late cysq down WIthOUt. : KOKKOS_LAMBDA (const size_t f_idx) {
Kokkos: :Experimental::partition_space /] .

});
* Streams allowed for parallel_for("calc_a_thing_typ1l",
— simultaneous kernels RangePolicy<EXEC_SPACE>
| daDeviceS h . I (streams[1],0,f_idata.n_faces_typl),
€SS cudabevicesyncnronize calls KOKKOS_LAMBDA (const size_t f_idx) {

« Streams increased complexity " ZAERY

— As code exits a function, leave streams in flight parallel_for("calc_a_thing_typ2",
_ . RangePolicy<EXEC_SPACE>
Manual process for book keeping (streams[2],0,f_idata.n_faces_typ2),
KOKKOS_LAMBDA (const size_t f_idx) {
/] we
});

XRAGE operator splitting severely limits the amount
1@ Los Alamos of overlapping computation that can occur

Streaming of View allocation + enabling cudaMallocAsync
resulted in the single largest speed-up of run_diff_cycle

 XRAGE is used to “free” allocations with CPU+DDR
- More than 120 allocations within run_diff cycle sized proportional to spatial DOF

« Streams permitted early computations to overlap with View creation on device

- Further complicated code flow / readability

= Juggling 11(!) streams

« Change in behavior from 3.7.01 to 4.0.01

— Our data lookup functions are all on the CPU

create_mirror_view_and_copy(view_alloc(stream[@], HOST(), WithoutInitializing, dev_view)
* Requests

- Please no more static assert failures that don’t give a line number

— Spack variant in Kokkos maintained package.py for cudaMallocAsync

1% Los Alamos

AAAAAAAAAAAAAAAA

cudaMallocAsync still noticeable when calling 100+ times

« Hand rolled a memory pool for exploratory purposes
— 120+ allocations to 6

« Umpire will replace manual pointer math
— Can Kokkos handle Umpire allocators being used to evict / transfer data?
— Can underlying pointer of Unmanaged views be swapped?

n_big_alloc += local_count + mirror_count + copy_in_count;

View<doublex> big_alloc(view_alloc(STORE(), "big_alloc" , stream[1])
’ n_big_alloc);

stream[1].fence();
doublex big_alloc_ptr = big_alloc.data();
size_t big_alloc_used 9,

doublex tev_ptr = big_alloc_ptr + big_alloc_used;
View<doublex,MemoryUnmanaged> tev (tev_ptr, hv_tev.size());

big_alloc_used += tev.size();
deep_copy(stream[1],tev, hv_tev);

1% Los Alamos

AAAAAAAAAAAAAAAA

XRAGE’s path to performance is porting more physics

« Grey diffusion matrix setup has been a testbed for Kokkos concepts to improve
performance
- Kokkos::Experimental::partition_space
— cudaMallocAsync
- Kokkos: :MemoryUnmanaged

« Would like to see partition_space come out of Experimental
« Considering moving to 4.1 for profiling concurrent kernels

* Interested in seeing if others have
- Explored/use memory pools and/or whether it is a priority for Kokkos development
- Have Power9 + V100 results comparing ScatterView vs. atomics for reductions

1% Los Alamos

AAAAAAAAAAAAAAAA

Questions / Comments / Advice?

AAAAAAAAAAAAAAAAAA

12/13/23 16

