
112/13/23 112/13/23Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Kokkos Usage in xRAGE

Peter Maginot- EAP DPL for Physics
with Daniel Holladay, Zach Medin, Clell (CJ) Solomon

Kokkos User Group Meeting, December 12-15, 2023

LA-UR-23-33701

212/13/23

Outline

1.What is xRAGE
2.Porting history/strategy
3.FY24 plans
4.Kokkos usage within grey diffusion

312/13/23 312/13/23

xRAGE is a large LANL ASC multiphysics code
• Mostly Fortran 90/95
• O(500k) lines
• Large number of internal users

− Their day job is to run xRAGE

• O(15-20) developers
• Extensive validation basis
• MPI domain decomposition for parallelism
• Expected to run [performantly] on all large NNSA HPC systems
• Geared toward high energy density applications (NIF, Omega, Z experiments)

− But still has “cold” physics for HE burn, material strength, etc..

Interested in Kokkos for GPU porting because code
base is too large to maintain multiple code paths

412/13/23

xRAGE targeting of GPUs has not been steady
• Significant work in FY19 and FY20

− Focus on inter-operatbility, FLCL, DualView
− Start porting physics [folders]

• Impediments
− COVID
− Unilateral decision to stop porting
− LANL ASC re-organization, EAP re-organization
− Staff departures (Classification Office, Industry, Other projects → Industry)

• Resumption in late FY22 through Today
− Focus on verifying / demonstrating GPU performance of ported packages

We are not where we could be, but we have a
consistent vision and plan to move forward!

512/13/23 512/13/23

Each ported xRAGE physics currently responsible for
migrating data to and from the GPU
• The above also implies, “from Fortran to C++”. Currently:

1. Break apart Fortran derived types into component arrays and scalar
2. Convert arrays into flcl_ndarry_t objects
3. Cross the Fortran/C barrier
4. Convert flcl_ndarry_t* objects into Host Views
5. Transfer Host Views to Device Views

• Very manual, very large function signatures
• FLCL has caused some tricky to find issues

− FLCL::HostSpace not really HostSpace (it’s CudaUVM)
− Correctness of taking a Fortran allocated array and assuming it is in CudaUVM space?
− flcl_ndarray_t have served their purpose, but new options exist

612/13/23 612/13/23

FY23 was “Year of the Machine” FY24 will be xRAGE’s
“Year of the GPUs”
• Unsplit hydrodynamics, conduction, high explosives reactive burn, multigroup

radiation diffusion to be ported
− LANL is getting serious since impending Venado and El Cap hardware deliveries

suggest GPUs are not going to go away
• Removing FLCL dependency

− xRAGE mixed compiler build + availability of “newer” GNU compilers on Sierra
− xRAGE will make use of F2018 “C Descriptors” to replace flcl_ndarray_t

• Streamline steps from Fortran derived types to GPU Views
− Maintain historical hierarchy of derived type data
− Consistent method to auto-generate Fortran to C interoperable structs then transform

§ Most developers will write a single Python file per Fortran derived type
§ CMake will run Python files to 1) auto-generate interoperable structs definitions and 2) C++

transforms to get from C descriptors to Views

712/13/23 712/13/23

[Grey] radiation diffusion is our most ported physics
• Amongst the original three “physics” packages [folders] identified in 2018
• Three pieces for complete grey diffusion solve

− Opacity (data) lookup
− Matrix setup
− Matrix solve

• Matrix setup is effectively the piece of xRAGE physics we can control
− Results suggest we might wish to consider controlling more pieces

• Since it was most ported, radiation diffusion has been our Kokkos testing ground
− What features of Kokkos might we want to use for performance?
− Allows us to explore how do multiple GPU chefs in the kitchen work?

§ xRAGE Kokkos, CUDA Fortran, CUDA C, TPLs that use Kokkos all must build and link together in
harmony

812/13/23 812/13/23

Despite following later, xRAGE is experiencing much of
others’ progression in performance

CPU Improvement

A 36-CTS Legacy Fortran

B 40-P9 C++ (forAllFaces)

C 4-P9 no MPS

D 4-P9 forAllFaceType

E 4-P9 lag opacity

F 4-P9 hypre 2.26 (bad settings)

G 4-P9 partition_space streams

H 4-P9 cudaMallocAsync
I 4-P9 hypre 2.26 (better settings)

J 4-P9 unmanaged memory

K 36-CTS Final C++ (lag opacity)

L 36-CTS Final C++ (no opacity lagging)

912/13/23 912/13/23

Focusing on what we are actually speeding up paints a
fairer picture

CPU Improvement

A 36-CTS Legacy Fortran

B 40-P9 GPU + MPS

C 4-P9 no MPS

D 4-P9 forAllFaceType splitting

G 4-P9 partition_space streams

H 4-P9 cudaMallocAsync
J 4-P9 unmanaged memory

We can achieve modest speed-up of a low FLOP, high data transfer
routine via code re-writing and less common Kokkos strategies.

1012/13/23 1012/13/23

xRAGE iteration over faces needed to evolve for GPUs

do dim=1,numdim
 do loop=1, n_types_of_faces(dim)
 face_type = face_id(loop,dim)
 if face_type == 1
 n_lo = face_lo(loop,dim)
 n_hi = face_hi(loop,dim)
 do n=n_lo,ni
 cell_hi = face_local(n,HI,dim)
 face_data(n,dim) = func(data(cell_hi))
 enddo
 else if face_type == 2
 ! ... omitted for brevity

 enddo
enddo

• Faces in xRAGE are categorized by
type and facing direction
1. Lo boundary
2. Hi boundary
3. Interior at 1:1 interface
4. Interior fine [lo] / coarse [hi]
5. Interior coarse [hi] / fine [lo]

• Face-based data stored in 2-D arrays
− Global face index not a concept
− Indexed within a dimension
− <10% over allocation (maxint*numdim)

maxint = max(max_f_x, max_f_y, max_f_z)

Natively would require 15 kernel launches!

Fortran Iteration Pattern

1112/13/23

Radiation diffusion first unrolled common pattern once
and created auxiliary iteration structures

parallel_for("calc_a_thing",
 RangePolicy<EXEC_SPACE>(0,f_idata.n_faces_tot),
 KOKKOS_LAMBDA (const size_t f_idx) {
 cell_lo = f_data.cell_lo_of_face(f_idx);
 cell_hi = f_data.cell_hi_of_face(f_idx);
 face_type = f_data.type_of_face(f_idx);
 dim = f_data.dim_of_face(f_idx);
 idx = f_data.idx_of_face(f_idx);
 if (face_type == 2){
 face_data(n,dim) = func(data(cell_lo))
 }
 // ... omit other face_types for brevity
});

• Did not collect timing data prior to
transition
− Code did not work on GPUs prior to

a MR that did too many things J
• Pros

− Single kernel launch
− Logical “forAllFaces” of a Fortran

pattern
• Cons:

− Increased memory footprint
− Retains face_type checking logic
− Atomics needed for reductions to cell

data

forAllFaces Iteration Pattern

1212/13/23

forAllFaces has been split into 3 separate kernel launches

parallel_for("calc_a_thing_interior",
 RangePolicy<EXEC_SPACE>
 (streams[0],0,f_idata.n_faces_int),
 KOKKOS_LAMBDA (const size_t f_idx) {
 // ...
});
parallel_for("calc_a_thing_typ1",
 RangePolicy<EXEC_SPACE>
 (streams[1],0,f_idata.n_faces_typ1),
 KOKKOS_LAMBDA (const size_t f_idx) {
 // ...
});
parallel_for("calc_a_thing_typ2",
 RangePolicy<EXEC_SPACE>
 (streams[2],0,f_idata.n_faces_typ2),
 KOKKOS_LAMBDA (const size_t f_idx) {
 // ...
});

• Eliminated if checking
− FaceIterationData doubles in memory footprint

• Small latency slowdown without
Kokkos::Experimental::partition_space

• Streams allowed for
− simultaneous kernels
− less cudaDeviceSynchronize calls

• Streams increased complexity
− As code exits a function, leave streams in flight
− Manual process for book keeping

xRAGE operator splitting severely limits the amount
of overlapping computation that can occur

forAllFaceTypes Iteration Pattern

1312/13/23 1312/13/23

Streaming of View allocation + enabling cudaMallocAsync
resulted in the single largest speed-up of run_diff_cycle
• xRAGE is used to “free” allocations with CPU+DDR

− More than 120 allocations within run_diff_cycle sized proportional to spatial DOF
• Streams permitted early computations to overlap with View creation on device

− Further complicated code flow / readability
§ Juggling 11(!) streams

• Change in behavior from 3.7.01 to 4.0.01
− Our data lookup functions are all on the CPU
create_mirror_view_and_copy(view_alloc(stream[0], HOST(), WithoutInitializing, dev_view)

• Requests
− Please no more static assert failures that don’t give a line number
− Spack variant in Kokkos maintained package.py for cudaMallocAsync

1412/13/23

cudaMallocAsync still noticeable when calling 100+ times
• Hand rolled a memory pool for exploratory purposes

− 120+ allocations to 6
• Umpire will replace manual pointer math

− Can Kokkos handle Umpire allocators being used to evict / transfer data?
− Can underlying pointer of Unmanaged views be swapped?

n_big_alloc += local_count + mirror_count + copy_in_count;
View<double*> big_alloc(view_alloc(STORE(), "big_alloc" , stream[1])
, n_big_alloc);
stream[1].fence();
double* big_alloc_ptr = big_alloc.data();
size_t big_alloc_used = 0;
double* tev_ptr = big_alloc_ptr + big_alloc_used;
View<double*,MemoryUnmanaged> tev (tev_ptr, hv_tev.size());
big_alloc_used += tev.size();
deep_copy(stream[1],tev, hv_tev);

1512/13/23 1512/13/23

xRAGE’s path to performance is porting more physics
• Grey diffusion matrix setup has been a testbed for Kokkos concepts to improve

performance
− Kokkos::Experimental::partition_space
− cudaMallocAsync
− Kokkos::MemoryUnmanaged

• Would like to see partition_space come out of Experimental
• Considering moving to 4.1 for profiling concurrent kernels
• Interested in seeing if others have

− Explored/use memory pools and/or whether it is a priority for Kokkos development
− Have Power9 + V100 results comparing ScatterView vs. atomics for reductions

1612/13/23

Questions / Comments / Advice?

