Sandia
National
Laboratories

Exceptional service in the national interest

MEMORY MANAGEMENT AND
PROFILING WITH KOKKOS: A
TRILINOS CASE STUDY

Christopher Siefert
Kokkos Users Group Meeting, December, 2023.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2023-14515C

OUTLINE

« Trilinos and Kokkos: A Brief History

« WrappedDualView: A Model for Memory Management

« Using Kokkos Tools to Identify H2D/D2H Transfers & Fences
- Diagnostics
Regression

- Note: Even if you're not a Trilinos user, these ideas aren’t Trilinos specific. You can feel
free to use/modify as you see fit.

KOKKOS & TRILINOS: A BRIEF HISTORY

Trilinos is a collection of scientific software libraries dating back to the 90s.
« Originally written for MPl-everywhere use on CPUs.

« GPU support co-developed with Kokkos.
« Still a “first user” for Kokkos releases.

Fun fact: Trilinos was the original home of Kokkos.

Trilinos objects generally respect the DualView semantic (exist on both Host & Device).
- Before Kokkos 4.2, there was no portable way to print on device.

« Trilinos originally used Cuda UVM to provide convenience to applications.
- Capture of reference counted pointers was problematic.

DEMAND GREW TO REMOVE UVM REQUIREMENT

. UVIVI support was patchy.
Some stuff just didn't work and we had to get fixed.

Some things would never be made to work.
NVIDIA encouraged us to stop using UVM.
Concern over cost (though this was often overblown).

- UVM did make it easy to accidently make H2D/D2H transfers. Hard to track with tools.

- Hope was that by getting rid of UVM, apps would identify these transfers and speed up.

HOW TO BEST REMOVE UVM?

« One option would be to expose Kokkos::DualView in all its glory.

« Apps did not like this option. The modify / sync dance was error prone.

« Alternative: Interface which hides the modify/sync and only does them when needed.

- We called this WrappedDualView (WDV); inspired by SYCL's buffer / accessor pattern.

« Note: DualView sync’s can do Kokkos::fence() to ensure consistent state.

« Codein:packages/tpetra/core/src/Tpetra Details WrappedDualView.*

WRAPPEDDUALVIEW (1): CONSTRUCTORS

« Constructor #1: User provides a DualView.
« Constructor #2: User provides a device View. WDV creates host view internally.
« Constructor #3: 1D / 2D subview constructors (WDV + ranges).

« Expert Constructor: 2 DualViews for subview sync management.

« Note: Higher dimensional subviews would work just fine. We just didn't need them.

WRAPPEDDUALVIEW (2): ACCESSORS

get[Host | Device]View() functions take access tags for sync/modify semantics
ReadOnly - Sync yes, modify no.

ReadWrite - Sync yes, modify yes.
OverwriteAll - Sync no, modify yes.

« Sets the sync/modify flags of underlying DualView.

« Will throw: Ask for Host view when a Device view is “checked out” (and vice versa).

« Fun fact: OverwriteAll was originally called “WriteOnly” but the name was misleading, since
it would not sync your data to the space. OverwriteAll captured the actual behavior better.

AN

WRAPPEDUALVIEW (3): CAVEATS / DETAILS

OverwriteAll reverts to ReadWrite for SubViews.

« Sync/modify checking gets to be expensive if people are accessing these on Host in loops.

- This matters for us since we have users partially porting CPU-only codes to GPUs.

« Sync/modify checks are only enabled when:
Pointers are not aliased OR

Execution spaces are GPU spaces.

« This will disable the checking on Serial / OpenMP builds, but leave them on for all GPU
builds (including UVM).

WRAPPEDDUALVIEW: FUTURE N
N\

WrappedDualView's design predates wide use of ExecutionSpace instances. \

DualView can generate device-wide syncs, where a stream-sync would have sufficed.

Will likely allow instance-only sync support, though this can allow for errors.

Not clear on the interface for this yet.

NOW TO ACTUALLY FIND THE H2D/D2H TRANSFERS

WrappedDualView got us code safety without UVM! \
- WDV doesn't help us find host to device transfers in complicated code.

« Sure you can use a visual profiling tool, but...
« They're often nearly impossible to read for real apps.

« They need special tools (e.g. Kokkos tools nvtxConnector) to get the Kokkos goodies.

« Oryou could step through it in a debugger
- Exceptionally labor intensive... when it works at all.

- Many HPC developers (not incorrectly) feel most reliable debugging tool is a printf.

« Qur answer: Kokkos Tools.

10

KOKKOS TOOLS N\
\

« SpaceTimeStack is the best-aligned tool to what we want. \
« By providing a stack view of the program, we can localize events to particular chunks of code.

« Just search the code for the timer label!
« Controlled via ENV variable KOKKOS_TOOLS_LIBS.

N

- However itisn't enough
« Dynamic library loading has to actually work on the platform.

- Requires you annotate your code with Kokkos::ProfilingRegions.
« Has a non-configurable floor that drops “small” timers.
- Doesn’t label things, e.g. you have a Kokkos::deep_copy(), but what are you copying, and where?

 Partial solution
« Modified SpaceTimeStack to add the src/dest Space to the print of Kokkos::deep_copy() calls.

11

TRILINOS TOOLING (DIAGNOSTIC)

« Trilinos already has a pre-Kokkos Teuchos-based Timer interface
- Does not create Kokkos::ProfilingRegions necessarily.

- Apps often print those timers out as part of their regular output.
- Those timers can be nested (allowing us to track code execution) via StackedTimer.

« Qur approach: Use the existing StackedTimer, but use the non-DLL profiling hooks
 E.g., Kokkos::Tools::Experimental::set begin parallel for callback

« Have them create Teuchos Timers.
« Control these via Trilinos ENV variables.

12

TRILINOS TOOLING (DIAGNOSTIC)

- ENV variables to add Teuchos::Timer objects to various Kokkos things
1. TPETRA_USE_TEUCHOS_TIMERS - Adds Teuchos::Timers to all Tpetra::ProfilingRegions.

2. TPETRA_TIME_KOKKOS_FENCE - Adds Teuchos::Timers to all Kokkos::fence() calls.

3. TPETRA_TIME_KOKKOS_DEEP_COPY - Adds Teuchos::Timers to all Kokkos::deep_copy() calls.
This includes space names.
TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE1 - Adds src/dest View names.

TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE2 - Adds vector sizes (can generate lots of output in
parallel since sizes are different between ranks)

4. TPETRA_TIME_KOKKOS_FUNCTIONS - Adds Teuchos::Timers to Kokkos::parallel_* calls.

- #2 and #3 can also be enabled through explicit function calls.

m .

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

- We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

« Output without any ENV variables set:

Driver: 3.32417 [1]

| Global: 3.32411 - 99.9983% [1]

| | createImport: 0.000472806 - 0.0142235% [1]
| | Remainder: 3.32364 - 99.9858%

| Remainder: 5.5183e-05 - 0.00166006%

[Passgd] (3.32 sec)

What we named the Timer surrounding the test

14

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

- We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

 TPETRA_USE_TEUCHOS_TIMERS

Driver: 1.60914 [1]

Global: 1.60908 - 99.9965% [1]

| createImport: 0.000482423 - 0.0299813% [1]

| | Tpetra::Import::1init: 0.000376352 - 78.0129% [1]

| | | Tpetra::Import::setupSamePermuteRemote: 0.000317982 - 84.4906% [1]
| | | Remainder: 5.837e-05 - 15.5094%

| | Remainder: 0.000106071 - 21.9871%

| Remainder: 1.6086 - 99.97%

|
|
|
|
|
|
|
| Remainder: 5.6199e-05 - 0.00349249%

Profiling Regions

15

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

- We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

 TPETRA_USE_TEUCHOS_TIMERS
 TPETRA_TIME_KOKKOS_DEEP_COPY

Driver: 3.34351 [1]

| Global: 3.34346 - 99.9985% [1]
createImport: 0.000588269 - 0.0175946% [1]
Tpetra::Import::init: 0.000497712 - 84.6062% [1]
Tpetra::Import::setupSamePermuteRemote: 0.000462021 - 92.829% [1]
| Kokkos::deep copy [Cuda=>Host]: 3.6505e-05 - 7.90116% [1]
Kokkos::deep copy small [Cuda=>Host]: 1.0617e-05 - 2.29795% [1]
Remainder: 0.000414899 - 89.8009%
Remainder: 3.5691e-05 - 7.17101%
émainder: 9.0557e-05 - 15.3938%
ainder: 3.34287 - 99.9824%
nder: 4.8542e-05 - 0.00145183%

Deep Copies
T 16

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

- We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

 TPETRA_USE_TEUCHOS_TIMERS
 TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSET

Driver: 3.2199 [1]
| Global: 3.21985 - 99.9983% [1]
| createImport: 0.000559054 - 0.0173628% [1]
| Tpetra::Import::init: 0.000465691 - 83.2998% [1]
Tpetra: :Import::setupSamePermuteRemote: 0.000431026 - 92.5562% [1]
| Kokkos::deep copy [Cuda=>Host] {lgMap=>lgMap mirror}: 3.6773e-05 ..
| Kokkos::deep copy small [Cuda=>Host] {lgMap=>lgMap mirror}: 1.0237e-05 ..
| Remainder: 0.000384016 - 89.0935%
| Remainder: 3.4665e-05 - 7.44378%
| Remainder: 9.3363e-05 - 16.7002%
| Remainder: 3.21929 - 99.9826%
Remainder: 5.3361e-05 - 0.00165723%
[Passed] (3.22 sec)

Src=>dest View names

17

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

- We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

 TPETRA_USE_TEUCHOS_TIMERS
 TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE?2

Driver: 1.886043 [1]

Global: 1.88638 - 99.9973% [1]

createImport: 0.000558055 - 0.0295833% [1]
Tpetra::Import::init: 0.000466191 - 83.5385% [1]
| Tpetra::Import::setupSamePermuteRemote: 0.000428582 - 91.9327% [1]
| | Kokkos::deep copy [Cuda=>Host] {lgMap=>lgMap mirror, 80} :..

| | Kokkos::deep copy small [Cuda=>Host] {lgMap=>1lgMap mirror,40}..
| | Remainder: 0.000383877 - 89.5691%

| Remainder: 3.7609e-05 - 8.06729%

Remainder: 9.1864e-05 - 16.4615%
Remainder: 1.88582 - 99.9704%
Remainder: 5.0911e-05 - 0.0026988%
[Passed] (1.89 sec)

Transfer size

18

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

- We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

 TPETRA_USE_TEUCHOS_TIMERS
 TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE?2
« TPETRA_TIME_KOKKOS_FENCE

Driver: 3.33936 [1]
| Global: 3.3393 - 99.9984% [1]
| | createImport: 0.000616963 - 0.0184758% [1]
| | | Tpetra::Import::init: 0.000510063 - 82.6732% [1]
| | | | Tpetra::Import::setupSamePermuteRemote: 0.000473831 - 92.8966% [1]
| | | | | Kokkos::fence SharedAllocationRecord<Kokkos::CudaSpace, void>::SharedAllocationRecord(): fence
after copying header from HostSpace (Cuda Instance 1): 1.9424e-05 ..
| | | Kokkos::fence Kokkos::Impl::ViewValueFunctor: View init/destroy fence (Cuda Instance 1) :..
| | Kokkos::fence HostSpace fence (Serial Instance 1): 1.009e-06 - 0.212945% [2]
| | Kokkos::fence Kokkos::Impl::ViewValueFunctor: View init/destroy fence (Serial Instance 1):
| | Kokkos::deep copy [Cuda=>Host]: 2.9377e-05 - 6.19989% [1]
| | Kokkos::fence Kokkos::Cuda::fence () : Unnamed Instance Fence (Cuda Instance 1):
| | Kokkos::deep copy small [Cuda=>Host]: 1.0142e-05 - 2.14043% [1]
| | Remainder: 0.000400651 - 84.5557%
| Remainder: 3.6232e-05 - 7.10344%
| Remainder: 0.0001069 - 17.3268%
| Remainder: 3.33868 - 99.9815% Execution space fences. Device fences
|

Remainder: 5.4954e-05 - 0.00164565% WOU|d Say ”AH |nstances”
[Passed] (3.34 sec)

m .

TRILINOS TOOLING (REGRESSION) N
N\

N

In addition to diagnostic tools, Tpetra also provides count-based tools for use in testing. \

Verify: “This code should only have X Kokkos::deep_copy() calls between Spaces”

We can do this through Tpetra’'s DeepCopyCounter and FenceCounter.
« See: packages/tpetra/core/src/Tpetra Details KokkosCounter.*

These require code modification since they're designed to test specific code fragments.

20

EXAMPLE: DEEPCOPY COUNTER

using Tpetra::Details;

DeepCopyCounter: :start () ;
Kokkos::deep copy(viewl,view?2);
size t ct same = DeepCopyCounter::get count same space();

size t ct diff = DeepCopyCounter::get count different space();

- The counter separately tallies copies within the same space vs. copies between spaces.
« To verify there are no H2D/D2H copies, you want get count different space () ;

* You canalso stop () the counter and reset () itto zero.

21

EXAMPLE: FENCE COUNTER N

using Tpetra::Details;

FenceCounter::start () ;
Kokkos: :fence () ;
size t ct inst = FenceCounter::get count instance (“Cuda”);

size t ct gbl = FenceCounter::get count global (“Cuda”);

 Instance and Global fences are tallied separately.
« Think cudaStreamSynchronize vs. cudaDeviceSynchronize.

+ Fences are tracked on a space by space basis and you have to ask for the one you want.
execution space () .name () Will give you the string you want.

 You canalso stop () the counter and reset () it to zero.

m .

CONCLUSIONS

Kokkos doesn't solve all problems. Often, you can build solutions using Kokkos.

WrappedDualView provides a safe encapsulation for DualView
- Still need to consider ExecutionSpace instances.

Use Kokkos Tools to augment existing stacked timers.
« Controllable output with Trilinos-level ENV vars.

Use Kokkos Tools for regression testing.
- Ensure nobody introduces extraneous fences / copies.

23

	Default Section
	Slide 1: Memory Management and Profiling with Kokkos: A Trilinos Case Study
	Slide 2: Outline
	Slide 3: Kokkos & Trilinos: A Brief History
	Slide 4: Demand grew to remove UVM requirement
	Slide 5: How to best remove uvm?
	Slide 6: WrappedDualView (1): Constructors
	Slide 7: WRAPPEDDUALVIEW (2): Accessors
	Slide 8: WRAPPEDUALVIEW (3): CAVEATS / details
	Slide 9: WRAPPEDDUALVIEW: Future
	Slide 10: Now to actually find the H2D/D2H Transfers
	Slide 11: Kokkos Tools
	Slide 12: Trilinos Tooling (DIAGNOSTIC)
	Slide 13: Trilinos Tooling (DIAGNOSTIC)
	Slide 14: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 15: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 16: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 17: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 18: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 19: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 20: Trilinos Tooling (REGRESSION)
	Slide 21: Example: DeepCopy Counter
	Slide 22: Example: Fence Counter
	Slide 23: CONCLUSIONS

