
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly

owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

MEMORY MANAGEMENT AND
PROFILING WITH KOKKOS: A
TRILINOS CASE STUDY

Christopher Siefert

SAND2023-14515C

Kokkos Users Group Meeting, December, 2023.

OUTLINE

• Trilinos and Kokkos: A Brief History

• WrappedDualView: A Model for Memory Management

• Using Kokkos Tools to Identify H2D/D2H Transfers & Fences
• Diagnostics

• Regression

• Note: Even if you’re not a Trilinos user, these ideas aren’t Trilinos specific. You can feel
free to use/modify as you see fit.

2

KOKKOS & TRILINOS: A BRIEF HISTORY

• Trilinos is a collection of scientific software libraries dating back to the 90s.
• Originally written for MPI-everywhere use on CPUs.

• GPU support co-developed with Kokkos.

• Still a “first user” for Kokkos releases.

• Fun fact: Trilinos was the original home of Kokkos.

• Trilinos objects generally respect the DualView semantic (exist on both Host & Device).
• Before Kokkos 4.2, there was no portable way to print on device.

• Trilinos originally used Cuda UVM to provide convenience to applications.

• Capture of reference counted pointers was problematic.

3

DEMAND GREW TO REMOVE UVM REQUIREMENT

• UVM support was patchy.
• Some stuff just didn’t work and we had to get fixed.

• Some things would never be made to work.

• NVIDIA encouraged us to stop using UVM.

• Concern over cost (though this was often overblown).

• UVM did make it easy to accidently make H2D/D2H transfers. Hard to track with tools.

• Hope was that by getting rid of UVM, apps would identify these transfers and speed up.

4

HOW TO BEST REMOVE UVM?

• One option would be to expose Kokkos::DualView in all its glory.

• Apps did not like this option. The modify / sync dance was error prone.

• Alternative: Interface which hides the modify/sync and only does them when needed.

• We called this WrappedDualView (WDV); inspired by SYCL’s buffer / accessor pattern.

• Note: DualView sync’s can do Kokkos::fence() to ensure consistent state.

• Code in: packages/tpetra/core/src/Tpetra_Details_WrappedDualView.*

5

WRAPPEDDUALVIEW (1): CONSTRUCTORS

• Constructor #1: User provides a DualView.

• Constructor #2: User provides a device View. WDV creates host view internally.

• Constructor #3: 1D / 2D subview constructors (WDV + ranges).

• Expert Constructor: 2 DualViews for subview sync management.

• Note: Higher dimensional subviews would work just fine. We just didn’t need them.

6

WRAPPEDDUALVIEW (2): ACCESSORS

• get[Host|Device]View() functions take access tags for sync/modify semantics
• ReadOnly – Sync yes, modify no.

• ReadWrite – Sync yes, modify yes.

• OverwriteAll – Sync no, modify yes.

• Sets the sync/modify flags of underlying DualView.

• Will throw: Ask for Host view when a Device view is “checked out” (and vice versa).

• Fun fact: OverwriteAll was originally called “WriteOnly” but the name was misleading, since
it would not sync your data to the space. OverwriteAll captured the actual behavior better.

7

WRAPPEDUALVIEW (3): CAVEATS / DETAILS

• OverwriteAll reverts to ReadWrite for SubViews.

• Sync/modify checking gets to be expensive if people are accessing these on Host in loops.

• This matters for us since we have users partially porting CPU-only codes to GPUs.

• Sync/modify checks are only enabled when:
• Pointers are not aliased OR

• Execution spaces are GPU spaces.

• This will disable the checking on Serial / OpenMP builds, but leave them on for all GPU
builds (including UVM).

8

WRAPPEDDUALVIEW: FUTURE

• WrappedDualView’s design predates wide use of ExecutionSpace instances.

• DualView can generate device-wide syncs, where a stream-sync would have sufficed.

• Will likely allow instance-only sync support, though this can allow for errors.

• Not clear on the interface for this yet.

9

NOW TO ACTUALLY FIND THE H2D/D2H TRANSFERS

• WrappedDualView got us code safety without UVM!
• WDV doesn’t help us find host to device transfers in complicated code.

• Sure you can use a visual profiling tool, but…
• They’re often nearly impossible to read for real apps.

• They need special tools (e.g. Kokkos tools nvtxConnector) to get the Kokkos goodies.

• Or you could step through it in a debugger
• Exceptionally labor intensive… when it works at all.

• Many HPC developers (not incorrectly) feel most reliable debugging tool is a printf.

• Our answer: Kokkos Tools.

10

KOKKOS TOOLS

• SpaceTimeStack is the best-aligned tool to what we want.
• By providing a stack view of the program, we can localize events to particular chunks of code.

• Just search the code for the timer label!

• Controlled via ENV variable KOKKOS_TOOLS_LIBS.

• However it isn’t enough
• Dynamic library loading has to actually work on the platform.

• Requires you annotate your code with Kokkos::ProfilingRegions.

• Has a non-configurable floor that drops “small” timers.

• Doesn’t label things, e.g. you have a Kokkos::deep_copy(), but what are you copying, and where?

• Partial solution
• Modified SpaceTimeStack to add the src/dest Space to the print of Kokkos::deep_copy() calls.

11

TRILINOS TOOLING (DIAGNOSTIC)

• Trilinos already has a pre-Kokkos Teuchos-based Timer interface
• Does not create Kokkos::ProfilingRegions necessarily.

• Apps often print those timers out as part of their regular output.

• Those timers can be nested (allowing us to track code execution) via StackedTimer.

• Our approach: Use the existing StackedTimer, but use the non-DLL profiling hooks
• E.g., Kokkos::Tools::Experimental::set_begin_parallel_for_callback

• Have them create Teuchos Timers.

• Control these via Trilinos ENV variables.

12

TRILINOS TOOLING (DIAGNOSTIC)

• ENV variables to add Teuchos::Timer objects to various Kokkos things

1. TPETRA_USE_TEUCHOS_TIMERS – Adds Teuchos::Timers to all Tpetra::ProfilingRegions.

2. TPETRA_TIME_KOKKOS_FENCE – Adds Teuchos::Timers to all Kokkos::fence() calls.

3. TPETRA_TIME_KOKKOS_DEEP_COPY – Adds Teuchos::Timers to all Kokkos::deep_copy() calls.
This includes space names.
• TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE1 – Adds src/dest View names.

• TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE2 – Adds vector sizes (can generate lots of output in
parallel since sizes are different between ranks)

4. TPETRA_TIME_KOKKOS_FUNCTIONS – Adds Teuchos::Timers to Kokkos::parallel_* calls.

• #2 and #3 can also be enabled through explicit function calls.

13

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

• We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

• Output without any ENV variables set:

14

Driver: 3.32417 [1]

| Global: 3.32411 - 99.9983% [1]

| | createImport: 0.000472806 - 0.0142235% [1]

| | Remainder: 3.32364 - 99.9858%

| Remainder: 5.5183e-05 - 0.00166006%

[Passed] (3.32 sec)

What we named the Timer surrounding the test

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

• We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

• TPETRA_USE_TEUCHOS_TIMERS

15

Driver: 1.60914 [1]

| Global: 1.60908 - 99.9965% [1]

| | createImport: 0.000482423 - 0.0299813% [1]

| | | Tpetra::Import::init: 0.000376352 - 78.0129% [1]

| | | | Tpetra::Import::setupSamePermuteRemote: 0.000317982 - 84.4906% [1]

| | | | Remainder: 5.837e-05 - 15.5094%

| | | Remainder: 0.000106071 - 21.9871%

| | Remainder: 1.6086 - 99.97%

| Remainder: 5.6199e-05 - 0.00349249%

Profiling Regions

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

• We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

• TPETRA_USE_TEUCHOS_TIMERS

• TPETRA_TIME_KOKKOS_DEEP_COPY

16

Driver: 3.34351 [1]

| Global: 3.34346 - 99.9985% [1]

| | createImport: 0.000588269 - 0.0175946% [1]

| | | Tpetra::Import::init: 0.000497712 - 84.6062% [1]

| | | | Tpetra::Import::setupSamePermuteRemote: 0.000462021 - 92.829% [1]

| | | | | Kokkos::deep_copy [Cuda=>Host]: 3.6505e-05 - 7.90116% [1]

| | | | | Kokkos::deep_copy_small [Cuda=>Host]: 1.0617e-05 - 2.29795% [1]

| | | | | Remainder: 0.000414899 - 89.8009%

| | | | Remainder: 3.5691e-05 - 7.17101%

| | | Remainder: 9.0557e-05 - 15.3938%

| | Remainder: 3.34287 - 99.9824%

| Remainder: 4.8542e-05 - 0.00145183%

Deep Copies

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

• We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

• TPETRA_USE_TEUCHOS_TIMERS

• TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE1

17

Driver: 3.2199 [1]

| Global: 3.21985 - 99.9983% [1]

| | createImport: 0.000559054 - 0.0173628% [1]

| | | Tpetra::Import::init: 0.000465691 - 83.2998% [1]

| | | | Tpetra::Import::setupSamePermuteRemote: 0.000431026 - 92.5562% [1]

| | | | | Kokkos::deep_copy [Cuda=>Host] {lgMap=>lgMap_mirror}: 3.6773e-05 …

| | | | | Kokkos::deep_copy_small [Cuda=>Host] {lgMap=>lgMap_mirror}: 1.0237e-05 …

| | | | | Remainder: 0.000384016 - 89.0935%

| | | | Remainder: 3.4665e-05 - 7.44378%

| | | Remainder: 9.3363e-05 - 16.7002%

| | Remainder: 3.21929 - 99.9826%

| Remainder: 5.3361e-05 - 0.00165723%

[Passed] (3.22 sec)

Src=>dest View names

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

• We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

• TPETRA_USE_TEUCHOS_TIMERS

• TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE2

18

Driver: 1.88643 [1]

| Global: 1.88638 - 99.9973% [1]

| | createImport: 0.000558055 - 0.0295833% [1]

| | | Tpetra::Import::init: 0.000466191 - 83.5385% [1]

| | | | Tpetra::Import::setupSamePermuteRemote: 0.000428582 - 91.9327% [1]

| | | | | Kokkos::deep_copy [Cuda=>Host] {lgMap=>lgMap_mirror,80}:…

| | | | | Kokkos::deep_copy_small [Cuda=>Host] {lgMap=>lgMap_mirror,40}…

| | | | | Remainder: 0.000383877 - 89.5691%

| | | | Remainder: 3.7609e-05 - 8.06729%

| | | Remainder: 9.1864e-05 - 16.4615%

| | Remainder: 1.88582 - 99.9704%

| Remainder: 5.0911e-05 - 0.0026988%

[Passed] (1.89 sec) Transfer size

EXAMPLE: TPETRA::IMPORT CONSTRUCTOR

• We added Tpetra::StackedTimer to a test which builds a Tpetra::Import object.

• TPETRA_USE_TEUCHOS_TIMERS

• TPETRA_TIME_KOKKOS_DEEP_COPY_VERBOSE2

• TPETRA_TIME_KOKKOS_FENCE

19

Driver: 3.33936 [1]

| Global: 3.3393 - 99.9984% [1]

| | createImport: 0.000616963 - 0.0184758% [1]

| | | Tpetra::Import::init: 0.000510063 - 82.6732% [1]

| | | | Tpetra::Import::setupSamePermuteRemote: 0.000473831 - 92.8966% [1]

| | | | | Kokkos::fence SharedAllocationRecord<Kokkos::CudaSpace, void>::SharedAllocationRecord(): fence

after copying header from HostSpace (Cuda Instance 1): 1.9424e-05 …

| | | | | Kokkos::fence Kokkos::Impl::ViewValueFunctor: View init/destroy fence (Cuda Instance 1):…

| | | | | Kokkos::fence HostSpace fence (Serial Instance 1): 1.009e-06 - 0.212945% [2]

| | | | | Kokkos::fence Kokkos::Impl::ViewValueFunctor: View init/destroy fence (Serial Instance 1): …

| | | | | Kokkos::deep_copy [Cuda=>Host]: 2.9377e-05 - 6.19989% [1]

| | | | | Kokkos::fence Kokkos::Cuda::fence(): Unnamed Instance Fence (Cuda Instance 1): …

| | | | | Kokkos::deep_copy_small [Cuda=>Host]: 1.0142e-05 - 2.14043% [1]

| | | | | Remainder: 0.000400651 - 84.5557%

| | | | Remainder: 3.6232e-05 - 7.10344%

| | | Remainder: 0.0001069 - 17.3268%

| | Remainder: 3.33868 - 99.9815%

| Remainder: 5.4954e-05 - 0.00164565%

[Passed] (3.34 sec)

Execution space fences. Device fences
would say “All Instances”

TRILINOS TOOLING (REGRESSION)

• In addition to diagnostic tools, Tpetra also provides count-based tools for use in testing.

• Verify: “This code should only have X Kokkos::deep_copy() calls between Spaces”

• We can do this through Tpetra’s DeepCopyCounter and FenceCounter.
• See: packages/tpetra/core/src/Tpetra_Details_KokkosCounter.*

• These require code modification since they’re designed to test specific code fragments.

20

EXAMPLE: DEEPCOPY COUNTER

using Tpetra::Details;

DeepCopyCounter::start();

Kokkos::deep_copy(view1,view2);

size_t ct_same = DeepCopyCounter::get_count_same_space();

size_t ct_diff = DeepCopyCounter::get_count_different_space();

21

• The counter separately tallies copies within the same space vs. copies between spaces.

• To verify there are no H2D/D2H copies, you want get_count_different_space();

• You can also stop() the counter and reset() it to zero.

EXAMPLE: FENCE COUNTER

using Tpetra::Details;

FenceCounter::start();

Kokkos::fence();

size_t ct_inst = FenceCounter::get_count_instance(“Cuda”);

size_t ct_gbl = FenceCounter::get_count_global(“Cuda”);

22

• Instance and Global fences are tallied separately.
• Think cudaStreamSynchronize vs. cudaDeviceSynchronize.

• Fences are tracked on a space by space basis and you have to ask for the one you want.
execution_space().name() will give you the string you want.

• You can also stop() the counter and reset() it to zero.

CONCLUSIONS

• Kokkos doesn’t solve all problems. Often, you can build solutions using Kokkos.

• WrappedDualView provides a safe encapsulation for DualView
• Still need to consider ExecutionSpace instances.

• Use Kokkos Tools to augment existing stacked timers.
• Controllable output with Trilinos-level ENV vars.

• Use Kokkos Tools for regression testing.
• Ensure nobody introduces extraneous fences / copies.

23

	Default Section
	Slide 1: Memory Management and Profiling with Kokkos: A Trilinos Case Study
	Slide 2: Outline
	Slide 3: Kokkos & Trilinos: A Brief History
	Slide 4: Demand grew to remove UVM requirement
	Slide 5: How to best remove uvm?
	Slide 6: WrappedDualView (1): Constructors
	Slide 7: WRAPPEDDUALVIEW (2): Accessors
	Slide 8: WRAPPEDUALVIEW (3): CAVEATS / details
	Slide 9: WRAPPEDDUALVIEW: Future
	Slide 10: Now to actually find the H2D/D2H Transfers
	Slide 11: Kokkos Tools
	Slide 12: Trilinos Tooling (DIAGNOSTIC)
	Slide 13: Trilinos Tooling (DIAGNOSTIC)
	Slide 14: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 15: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 16: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 17: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 18: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 19: EXAMPLE: Tpetra::IMPORT COnstructor
	Slide 20: Trilinos Tooling (REGRESSION)
	Slide 21: Example: DeepCopy Counter
	Slide 22: Example: Fence Counter
	Slide 23: CONCLUSIONS

