Use of Kokkos for imaging with radio interferometric telescopes

KUG 2023, Albuquerque, NM, Dec 13th 2023

S. Bhatnagar

M. Hsieh, F. Madsen, P. Jagannathan

Algorithms R&D Group,

National Radio Astronomy Observatory, Socorro, NM, USA

Introduction

- Sanjay Bhatnagar
 - Algorithms R&D Group at the National Radio Astronomy Observatory

- NRAO: A NSF funded national observatory
 - Build and operate large radio astronomy facilities: VLA/ALMA/VLBA
 - Next-gen: ngVLA with 300 antennas spread across the US South-west
 - Open source software for calibration and image reconstruction
 - Widely used in the RA community internationally
 - Runs on laptops, cluster, GPU/CPU,...,heterogeneous h/w

The Very Large Array (NM, USA)

- Very Large Array
- 27 antennas
- Antennas movable on rails
 1 – 27 Km radius
- Spread over 27 Km radius
- Size of the "lens" 30 Km
- Frequency range 300 MHz 50 GHz

Other RA Observatories in the world

Other RA Observatories in the world

- Single dish Resolution too low for many scientific investigations
 - Limited collecting area + resolution limits sensitivity at low frequencies

Single dish resolving power

Wavelength
Dish Diameter

Biggest steerable single dish = 100 m

6

- Single dish Resolution too low for many scientific investigations
 - Limited sensitivity/limits sensitivity at low frequencies

Synthesis Array resolving power *Wavelength*

Max. separation between antennas

Max. separation in VLA = 35 km

Resolution: ~ 350x better

- An indirect imaging technique that collects data in the Fourier domain
 - Many antennas separated by 10s 100s Km
 - Each pair of antennas measure one Fourier Component

- An indirect imaging technique that collects data in the Fourier domain
 - Many antennas separated by 10s 100s Km
 - Each pair of antennas measure another Fourier Component

- An indirect imaging technique that collects data in the Fourier domain
 - Many antennas separated by 10s 100s Km
 - Each pair of antennas measure another (one) Fourier Component

- An indirect imaging technique that collects data in the Fourier domain
 - Many antennas separated by 10s 100s Km
 - All pairs with one antenna measure N-1 Fourier Component = 26

- An indirect imaging technique that collects data in the Fourier domain
 - Many antennas separated by 10s 100s Km
 - All pairs with all antenna measure N(N-1)/2 Fourier Component = 351

- Aperture Synthesis
 - Use <u>Earth Rotation Synthesis</u> to fill the Fourier plane
 - All pairs with all antenna measures N(N-1)/2 Fourier Component
 - Measure $N(N-1)/2 \times 2$ Fourier components over 2 integration time = 702

- Aperture Synthesis
 - Use <u>Earth Rotation Synthesis</u> to fill the Fourier plane
 - All pairs with all antenna measures N(N-1)/2 Fourier Component
 - Measure $N(N-1)/2 \times 10$ Fourier components over 10 integrations = 7020

- Aperture Synthesis
 - Use <u>Earth Rotation Synthesis</u> to fill the Fourier plane
 - All pairs with all antenna measures N(N-1)/2 Fourier Component
 - Fourier Components measured over 10 hr: O(10^{12 15})

- Data Size: 10s - 100s TB now Up to Exa Bytes for SKA-class telescopes

Data not on a regular grid.

Interferometric Imaging

Raw image (FT of the raw data) is dynamic range limited

Dynamic range: > 1:1000,000

Dynamic range: 1:1000

- Processing: Remove telescope artifacts to reconstruct the sky brightness
- Image reconstruction is a High-Performance-Computing-using Big-Data problem

The Computing Problem

- Basic computing steps
 - 1. Use FFT to transform to the image domain: Gridding + FFT
 - 2. Image-plane deconvolution of the PSF: Search and subtract on images
 - 3. Inverse transform to the data domain: De-gridding + Inv. FFT

The Computing Problem: Why Gridding?

- Raw data is not on a regular grid
 - FFT require re-sampling on a regular grid

NU-FFT: But with specialized kernels

Computing requirements

- N_{data} x N²_{CF} x Gridding FLOP + overheads
- $ngVLA_{:} O(10^{13-14}) \times (10 \times 10) \times ... = ~50 PFLOP/s$
- SKA: $O(10^{15}) \times ... = \sim ExaFLOP$

- HPC + Big-Data
 - Continuous data flow (24x7 observing)
 - PFLOPS / ExaFLOPS to keep-up with the data rates
 - 100s of Tera Bytes for a typical observing session

- Computing needs to be efficient and 24x7
 - Not a one-shot experiment on a homogeneous super-computer
- Requirement: Seamless computing 24x7 on a heterogeneous cluster

Algorithm Architecture: Components view

Scaling: On multi-CPU/cores hardware

Scaling on GPU: Using Kokkos

Complexity reduction

ngVLA would need O(103)-way parallization!

Scaling in real-life

- A gridder on a GPU using Kokkos (NGVLA Memo #05)
- What does it mean in real-life application?
 - 200-pointing wide-band mosaic: 7-10 days vs 2.5hr

ngVLA would need O(10³)-way parallization!

Scaling: On Wide-area network (OSG)

- **Distributed High Throughput Computing:**
 - Center for High Throughput Computing, U of W-M.
 - » PATh: A GPU cluster at a national scale
 - AWS: CPU cluster
- Opportunistic computing + Edge-caching
- Work in progress
 - Currently effort is resource-limited!
 - More human and computing resources
 - International resources

Optimization: Hardware generations

• Scaling on the GPU: View from the "inside"

[Courtesy Jagannathan, Heriart]

HPG is memory-bandwidth bound

Issues, future work

- Ported one compute hot-spot using Kokkos
 - O(100x) improvement compared to a CPU core, but still need $O(10^3)$ GPUs!
 - GPU occupancy remains low: < 50%
- Scaling with data volume (in GPU memory)
 - Runtime remains unchanged with data volume, No. of Streams
- I/O bandwidths
 - Data store → Compute nodes → GPU
- Move more compute to GPU
 - Calibration : Multiple iterations on data in GPU memory
 - Compute CF in the GPU: OTF numerically, Analytical
- Kokkos for logically partitioned GPUs (H100)?
- Performance of the same code on GPU and CPU?
 - Decorations for Roofline model of a code segement?

