THURSDAY DECEMBER 14T, 2023

TEAM-LEVEL MDRANGE
POLICIES

NEVIN LIBER DONG HUN LEE
Argonne National Laboratory Sandia National Laboratories



TEAM-LEVEL MDRANGE POLICIES

= Provide multidimensional support for nested parallelism
» Kokkos 4.0




ADDITIONS TO NESTED POLICIES

= MD versions of nested team execution policies
» Supports multi dimension in nested parallel pattern

= TeamThreadRange

» TeamThreadMDRange
= TeamVectorRange

» TeamVectorMDRange

= ThreadVectorRange

» ThreadVectorMDRange




APl FOR *MDRANGE

parallel_for(

*MDRange<Rank<2>, TeamHandle>(team_handle, i@, il),
[=]1(int i, int §) { /* ... %/ }
);

» Takes in Rank<N, OuterDir, InnerDir> that describes its iteration pattern
= Same behavior as regular MDRangePolicy

= N is number of dimensions (required to be [2, 8])

= xDir are enum class Iterate { Default, Left, Right }

= Iterate is used to choose iterating left-most dimension or right-most dimension
= Only QuterDir is used for *MDRange

4




DEDUCTION GUIDES (CTAD) IN *"MDRANGE

= Non *MDRange policies have functions for deduction purposes that return
implementation-defined types

template <class TeamMemberType, class iType>
/* implementation defined x/ TeamThreadRange(TeamMemberType team, iType count);

= [n C++17 we can deduce Rank & TeamHand Le from the constructor parameters

*MDRange(team, 4); // NOT OK, violates i>=2

*MDRange(team, 4, 5); // OK; *xMDRange<Rank<2>, decltype(team)>
*MDRange(team, 4, 5, 6); // OK; *MDRange<Rank<3>, decltype(team)>
*MDRange(team, 4, 5, 6, 2, 3, 4, 5, 6); // 0K, max num of extents allowed

5



TeamThreadMDRange

template <class Rank, typename TeamHandle>
class TeamThreadMDRange { /* ... */ };

TeamThreadMDRange(team, extent_1, extent 2, ...);

= Splits the index range @ to extent over the threads of the team
= extent is the backend-dependent rank that will be threaded




using TeamHandle = TeamPolicy<>::member_type;

parallel_for(TeamPolicy<>(N,AUTO),
KOKKOS_LAMBDA (TeamHandle const& team) {

int leagueRank = team.league_rank();

auto range = TeamVectorMDRange(team, n@, nl, n2, n3);

parallel_for(range,
[=] (int i@, int i1, int i2, int 1i3) {
A(leagueRank, i@, il, i2, i3) = B(leagueRank, il) + C(il1, i2, i3);
});

team.team_barrier();

int teamSum = 0;
parallel_reduce(range,

[=] (int i@, int i1, int i2, int i3, int& vectorSum) {

vectorSum += v(leagueRank, i, j, k, 1);

}, teamSum
);
single(PerTeam(team), [&leagueSum, teamSum]() { leagueSum += teamSum; });
A_rowSum[leagueRank] = leagueSum;

)



TeamVectorMDRange

template <class Rank, typename TeamHandle>
class TeamVectorMDRange { /* ... *x/ };

TeamVectorMDRange(team, extent_ 1, extent_ 2, ...);

= Splits an index range over the threads of the team and another index range over
their vector lanes.

» Ranks for threading and vectorization determined by the backend




using TeamHandle = TeamPolicy<>::member_type;
parallel_for(
TeamPolicy<>(N, AUTO), KOKKOS_LAMBDA(TeamHandle const& team) {
int leagueRank = team.league_rank();

auto range = TeamVectorMDRange(team, n@, nl, n2, n3);

parallel_for(range, [=](int i@, int i1, int i2, int i3) {
});

team.team_barrier();

A(leagueRank, i@, il, i2, i3) = B(leagueRank, il) + C(i1l,

int teamSum = 0;
parallel_reduce(
range,
[=](int i@, int i1, int i2, int i3, int& vectorSum) {
vectorSum += v(leagueRank, i, j, k, 1);
I

teamSum) ;
single(PerTeam(team),

[&leagueSum, teamSum]() { leagueSum += teamSum; });
A_rowSum[leagueRank] = leagueSum;

});

i2, i3);



ThreadVectorMDRange

template <class Rank, typename TeamHandle>
class ThreadVectorMDRange { /* ... *x/ };

ThreadVectorMDRange(team, extent_1, extent 2, ...);

= Splits the index range 0 to extent over the vector lanes of the calling thread
» extent is the backend-dependent rank that will be vectorized
= Dispatched from a TeamThreadRange or TeamThreadMDRange

10




using TeamHandle = TeamPolicy<>::member_type;

parallel_for(
TeamPolicy<>(N, Kokkos::AUTO), KOKKOS_LAMBDA(TeamHandle const& team) {
int leagueRank = team.league_rank();

auto teamThreadRange = TeamThreadRange(team, nQ);
auto threadVectorMDRange =
ThreadVectorMDRange(team, nl, n2, n3);

parallel_for(teamThreadRange, [=](int i0) {
parallel_for(threadVectorMDRange, [=](int il, int i2, int i3) {
A(leagueRank, i@, i1, i2, i3) +=
B(leagueRank, il) + C(il, i2, i3);

};
});

team.team_barrier();

int teamSum = 0;
parallel_for(teamThreadRange, [=, &teamSum](int const& i0) {
int threadSum = 0;
parallel_reduce(
threadVectorMDRange,
[=]1(int i1, int i2, int i3, int& vectorSum) {
vectorSum += D(leagueRank, i@, il, i2, i3);
H

threadSum);

teamSum += threadSum;

)



NESTED MDRANGE POLICIES

» Thread and Vector Parallelism:
= Based on iteration direction (OuterDir)

» Default direction computed from
TeamHandle: :execution_space::array_layout

» For now, at most 2 dimensions are paralleled
» Thread parallelism is applied to the slowest dimension
= Vector parallelism is applied to the fastest dimension

12



» This was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed
platforms, in support of the nation’s exascale computing imperative. Additionally,
this research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-
AC02-06CH11357.

13




