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TEAM-LEVEL MDRANGE POLICIES

= Provide multidimensional support for nested parallelism
» Kokkos 4.0




ADDITIONS TO NESTED POLICIES

= MD versions of nested team execution policies
» Supports multi dimension in nested parallel pattern

= TeamThreadRange

» TeamThreadMDRange
= TeamVectorRange

» TeamVectorMDRange

= ThreadVectorRange

» ThreadVectorMDRange




APl FOR *MDRANGE

parallel_for(

*MDRange<Rank<2>, TeamHandle>(team_handle, i@, il),
[=]1(int i, int §) { /* ... %/ }
);

» Takes in Rank<N, OuterDir, InnerDir> that describes its iteration pattern
= Same behavior as regular MDRangePolicy

= N is number of dimensions (required to be [2, 8])

= xDir are enum class Iterate { Default, Left, Right }

= Iterate is used to choose iterating left-most dimension or right-most dimension
= Only QuterDir is used for *MDRange
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DEDUCTION GUIDES (CTAD) IN *"MDRANGE

= Non *MDRange policies have functions for deduction purposes that return
implementation-defined types

template <class TeamMemberType, class iType>
/* implementation defined x/ TeamThreadRange(TeamMemberType team, iType count);

= [n C++17 we can deduce Rank & TeamHand Le from the constructor parameters

*MDRange(team, 4); // NOT OK, violates i>=2

*MDRange(team, 4, 5); // OK; *xMDRange<Rank<2>, decltype(team)>
*MDRange(team, 4, 5, 6); // OK; *MDRange<Rank<3>, decltype(team)>
*MDRange(team, 4, 5, 6, 2, 3, 4, 5, 6); // 0K, max num of extents allowed
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TeamThreadMDRange

template <class Rank, typename TeamHandle>
class TeamThreadMDRange { /* ... */ };

TeamThreadMDRange(team, extent_1, extent 2, ...);

= Splits the index range @ to extent over the threads of the team
= extent is the backend-dependent rank that will be threaded




using TeamHandle = TeamPolicy<>::member_type;

parallel_for(TeamPolicy<>(N,AUTO),
KOKKOS_LAMBDA (TeamHandle const& team) {

int leagueRank = team.league_rank();

auto range = TeamVectorMDRange(team, n@, nl, n2, n3);

parallel_for(range,
[=] (int i@, int i1, int i2, int 1i3) {
A(leagueRank, i@, il, i2, i3) = B(leagueRank, il) + C(il1, i2, i3);
});

team.team_barrier();

int teamSum = 0;
parallel_reduce(range,

[=] (int i@, int i1, int i2, int i3, int& vectorSum) {

vectorSum += v(leagueRank, i, j, k, 1);

}, teamSum
);
single(PerTeam(team), [&leagueSum, teamSum]() { leagueSum += teamSum; });
A_rowSum[leagueRank] = leagueSum;

)



TeamVectorMDRange

template <class Rank, typename TeamHandle>
class TeamVectorMDRange { /* ... *x/ };

TeamVectorMDRange(team, extent_ 1, extent_ 2, ...);

= Splits an index range over the threads of the team and another index range over
their vector lanes.

» Ranks for threading and vectorization determined by the backend




using TeamHandle = TeamPolicy<>::member_type;
parallel_for(
TeamPolicy<>(N, AUTO), KOKKOS_LAMBDA(TeamHandle const& team) {
int leagueRank = team.league_rank();

auto range = TeamVectorMDRange(team, n@, nl, n2, n3);

parallel_for(range, [=](int i@, int i1, int i2, int i3) {
});

team.team_barrier();

A(leagueRank, i@, il, i2, i3) = B(leagueRank, il) + C(i1l,

int teamSum = 0;
parallel_reduce(
range,
[=](int i@, int i1, int i2, int i3, int& vectorSum) {
vectorSum += v(leagueRank, i, j, k, 1);
I

teamSum) ;
single(PerTeam(team),

[&leagueSum, teamSum]() { leagueSum += teamSum; });
A_rowSum[leagueRank] = leagueSum;

});

i2, i3);



ThreadVectorMDRange

template <class Rank, typename TeamHandle>
class ThreadVectorMDRange { /* ... *x/ };

ThreadVectorMDRange(team, extent_1, extent 2, ...);

= Splits the index range 0 to extent over the vector lanes of the calling thread
» extent is the backend-dependent rank that will be vectorized
= Dispatched from a TeamThreadRange or TeamThreadMDRange
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using TeamHandle = TeamPolicy<>::member_type;

parallel_for(
TeamPolicy<>(N, Kokkos::AUTO), KOKKOS_LAMBDA(TeamHandle const& team) {
int leagueRank = team.league_rank();

auto teamThreadRange = TeamThreadRange(team, nQ);
auto threadVectorMDRange =
ThreadVectorMDRange(team, nl, n2, n3);

parallel_for(teamThreadRange, [=](int i0) {
parallel_for(threadVectorMDRange, [=](int il, int i2, int i3) {
A(leagueRank, i@, i1, i2, i3) +=
B(leagueRank, il) + C(il, i2, i3);

};
});

team.team_barrier();

int teamSum = 0;
parallel_for(teamThreadRange, [=, &teamSum](int const& i0) {
int threadSum = 0;
parallel_reduce(
threadVectorMDRange,
[=]1(int i1, int i2, int i3, int& vectorSum) {
vectorSum += D(leagueRank, i@, il, i2, i3);
H

threadSum);

teamSum += threadSum;

)



NESTED MDRANGE POLICIES

» Thread and Vector Parallelism:
= Based on iteration direction (OuterDir)

» Default direction computed from
TeamHandle: :execution_space::array_layout

» For now, at most 2 dimensions are paralleled
» Thread parallelism is applied to the slowest dimension
= Vector parallelism is applied to the fastest dimension
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