

KUG 2023 - Moving least squares

Yohann Bosqued December 14, 2023

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Moving least squares

Principle

Definitions

- Let $A(\vec{x})$ be a polynomial, then $A(\vec{x}) = p(\vec{x}).a^{T} = \langle p(\vec{x})|a \rangle$ with $p(\vec{x})$, the polynomial basis taken at \vec{x} . $p(\begin{bmatrix} x & y \end{bmatrix}) = \begin{bmatrix} 1 & x & y & x^{2} & xy & y^{2} \end{bmatrix}$
- Let φ be a compactly supported radial basis function. Its value is only dependent on the input's norm and is supported on a compact set. Its goal is to select points and give each an influence on the final result.

$$\phi(ec{x}) = \left\{ egin{array}{cc} (1 - \|ec{x}\|)^2 & ext{if } \|ec{x}\| \leq 1 \ 0 & ext{else} \end{array}
ight.$$

Weighted and moving least squares

Let f be a function from \mathbb{R}^d to \mathbb{R} and a set of source points S. The goal of the weighted least squares is to find the polynomial G minimizing $||G - f||_{\phi,2}$. Using the polynomial basis, finding g minimizing $||\langle p(\cdot)|g \rangle - f||_{\phi,2}$.

$$g^{T} = [P^{T} \Phi P]^{-1} P^{T} \Phi F^{T}$$
$$f(\vec{u}) \approx \langle p(\vec{u}) | g \rangle$$
$$\approx p(\vec{u}) [P^{T} \Phi P]^{-1} P^{T} \Phi F$$

Weighted and moving least squares

Let f be a function from \mathbb{R}^d to \mathbb{R} and a set of source points S. The goal of the weighted least squares is to find the polynomial G minimizing $||G - f||_{\phi,2}$. Using the polynomial basis, finding g minimizing $||\langle p(\cdot)|g \rangle - f||_{\phi,2}$.

$$g^{T} = \left[P^{T} \Phi P\right]^{-1} P^{T} \Phi F^{T}$$
$$f(\vec{u}) \approx \left\langle p(\vec{u}) | g \right\rangle$$
$$\approx p(\vec{u}) \left[P^{T} \Phi P\right]^{-1} P^{T} \Phi F^{T}$$

$$g_{\vec{u}}^{\mathsf{T}} = \left[P_{\vec{u}}^{\mathsf{T}} \Phi_{\vec{u}} P_{\vec{u}} \right]^{-1} P_{\vec{u}}^{\mathsf{T}} \Phi_{\vec{u}} F_{\vec{u}}^{\mathsf{T}}$$
$$f(\vec{u}) \approx \left\langle p(\vec{u}) | g_{\vec{u}} \right\rangle$$
$$\approx p(\vec{u}) \left[P_{\vec{u}}^{\mathsf{T}} \Phi_{\vec{u}} P_{\vec{u}} \right]^{-1} P_{\vec{u}}^{\mathsf{T}} \Phi_{\vec{u}} F_{\vec{u}}^{\mathsf{T}}$$

$$f(\vec{u}) \approx \langle G_{\vec{u}} | F_{\vec{u}} \rangle$$
$$G_{\vec{u}} = p(\vec{u}) \left[P_{\vec{u}}^{\mathsf{T}} \Phi_{\vec{u}} P_{\vec{u}} \right]^{-1} P_{\vec{u}}^{\mathsf{T}} \Phi_{\vec{u}}$$

What needs to be done

- From a set of points S and a target point \vec{u} :
 - Find the closest set of neighboring points $S_{\vec{u}}$
 - Compute and save the coefficients $(G_{\vec{u}} = p(\vec{u}) [P_{\vec{u}}^T \Phi_{\vec{u}} P_{\vec{u}}]^{-1} P_{\vec{u}}^T \Phi_{\vec{u}})$
 - Now ready to make approximations!
- Coefficients and approximation are computed in batches of target points

Example (Coefficients) Source and target ArborX (Closest neigbors) Moment inverse (SVD pseudo-inverse) Polynomial basis ► Weight ► Coefficients Moment ► points . . . • 6 neighbors per target point

Example (Approximation)

$$f(\vec{x}) = \frac{x_0 x_1}{4} + 1$$

0.147	[1]
0.189	1.75
0.238	1
0.286	1.5
0.054	2.0
0.086	1.25

Example (Larger scale)

$$f(\vec{x}) = \frac{\operatorname{sgn}(x_0) + 1}{2}$$

Source values

Real target values

Approximated values

-2 -1

To.

2 3

Interface

•••

Kokkos::View<Point*, MemorySpace> source_points; Kokkos::View<Point*, MemorySpace> target_points; Kokkos::View<double*, MemorySpace> source_values; Kokkos::View<double*, MemorySpace> approx_values;

// ...

MovingLeastSquares<MemorySpace> mls(exec_space, source_points, target_points);
mls.interpolate(exec_space, source_values, approx_values);
// source_values = ...
mls.interpolate(exec_space, source values, approx_values);

Performance

Performance (1M points)

Performance

7 CAK RIDGE

Performance (Update!)

- No scratch pad use, global memory only
- Multiple kernels, heavy use of MDRangePolicy

Performance (Update!)

- Scratch pad for temporary data
- Single kernel, parallelized with TeamPolicy (One target per thread)
- Originally 1200B/target, now down to 960B/target with extra work

Learning Kokkos

Cursus and previous internships

- Parallelization
- OpenMP
- MPI
- ...

- CUDA
- OpenMP Target
- GPU offloading

• ...

What I used to do

•••

```
#pragma omp target distribute teams parallel reduce op(+:...) is_device_ptr(...)
for (int i = 0; i < N; i++) {
    // ...
}</pre>
```

and manual memory management

What I do now

•••

Kokkos::parallel_reduce(Kokkos::RangePolicy<ExecutionSpace>(space, 0, N),
KOKKOS_LAMBDA (int i, double& loc) {
 // ...
}, /**/);

and smart memory management (with Views!)

What will I do

Questions?

