Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PeleeNet-Keras

An Unoffical Implementation of PeleeNet by TensorFlow, Keras.
Implemented training with CIFAR-10.

Original Paper

R. J. Wang, X. Li, C. X. Ling. Pelee: A Real-Time Object Detection System on Mobile Devices. NIPS. 2018. https://arxiv.org/abs/1804.06882

The original implementation by Caffe. https://github.com/Robert-JunWang/Pelee

Get started

from pelee_net import PeleeNet
model = PeleeNet(input_shape=(224,224,3), use_stem_block=True, n_classes=1000)

Parameters

  • input_shape : Resolution of input images. 224x224x3 by default(same as the original).
  • use_stem_block : Whether to use Stem Block. If True it's same as the original, if False input is connected directly to the first Dense Layer.
  • n_classes : Number of classes in prediction

Results on CIFAR-10

Augmentation Stem Block No weight Decay 5e-4 Weight Decay
No No 0.7633 0.9247
No Yes 0.8280 0.9218
Yes No 0.8881 0.9446
Yes Yes 0.8996 0.9410
  • Enable stem block cases : Input=(224, 224, 3), Upsampling x7
  • Disable stem block cases : Input=(32, 32, 3), No upsampling

Data augmentation is the standard data augmentation(4 pixels shift and horizontal flip).

No weight decay

5e-4 weight decay

There was no discussion int the paper on weight decay. But I noticed that weight decay is important in increasing the accuracy of CIFAR-10, so I added it.

Details (Japanese)

DenseNetの軽量版、PeleeNetをKerasで実装した
https://qiita.com/koshian2/items/187e240f478504079e7a

About

An Unoffical Implementation of PeleeNet by TensorFlow, Keras

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages