Skip to content
Parse KGS Ranks Graph into Data
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
docs
kgschart
models
tests
train
.gitignore
.travis.yml
LICENSE
README.md
setup.py

README.md

Build Status

kgschart

kgschart is a python pakcage for parsing KGS rank graphs into numeric data. Visit this page for the overview of the package.

NEWS

Requirements

  • Python 2.7+ or 3.4+
  • numpy pillow scipy pandas scikit-learn matplotlib

Installation

The installation is the easiest with anaconda/miniconda python distribution, since it simplifies the setup process for scientific computation libraries such as numpy, scipy, and scikit-learn.

anaconda/miniconda users

If you use python distribution based on anaconda or miniconda based environment, first, install required packages by conda command:

$ conda install numpy pillow scipy pandas scikit-learn matplotlib pip

Then, install kgschart package by:

$ git clone --depth 1 https://github.com/kota7/kgschart.git
$ pip install --no-deps kgschart

Note that we should use --no-deps flag since required packages are already installed by conda.

Alternatively, download the package directly from GitHub

$ pip install --no-deps git+https://github.com/kota7/kgschart

Official Python (non-conda) users

The kgschart package works also on official (non-conda) Python (provided that dependencies are installed properly).

The following command tries to install the package along with the dependencies.

$ git clone --depth 1 https://github.com/kota7/kgschart.git
$ pip install kgschart

Alternatively, download the package directly from GitHub

$ pip install git+https://github.com/kota7/kgschart

Quick Installation Check

If the installation is successful, following commands should run with no error.

>>> from kgschart import KgsChart
>>> from pkg_resources import resource_stream
>>> with resource_stream('kgschart', 'example/leela-ja_JP.png') as f:
....    k = KgsChart(f)
>>> k.parse()
>>> print(k.data.head())
#                        time      rate
#0 2016-03-21 22:19:01.165048  1.762470
#1 2016-03-22 13:51:03.495146  1.762470
#2 2016-03-23 05:23:05.825242  1.776722
#3 2016-03-23 20:55:08.155340  2.040380
#4 2016-03-24 12:27:10.485436  2.232779

See this page for more about the usage of the package.

You can’t perform that action at this time.