Skip to content

kpkeller/aqsr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

aqsr

R Package for Accessing EPA AQS data

This package provides an R interface for the EPA Air Quality System (AQS) API. Information about the API, including Terms of Service, is available at https://aqs.epa.gov/aqsweb/documents/data_api.html.

Installation

The aqsr package can be installed by running

devtools::install_github("jpkeller/aqsr")

Creating a User Key

The AQS API requires an email address and key for all queries. The key is not used for authentication (as in a password), but it is used for identification. Sign-up using the aqs_signup() function, and your key phrase will be emailed.

Once an email address and key are registered, assign them to a list in the working environment using create_user(). For example:

myuser <- create_user(email="myemail@mydomain",
                    key="mykeyhere")

Alternatively, the email address and key can be stored as the environment variables AQS_EMAIL and AQS_KEY, respectively, to avoid directly storing the values in code that might be part of a public repository. To do this, add the lines

AQS_EMAIL="myemail@mydomain"
AQS_KEY="mykeyhere"

to the .Renviron file in your home directory. Calling create_user() without any argument will then read from these values:

myuser <- create_user() # Use stored credentials for user

Care should still be taken to avoid storing the resulting object in a public repository.

All functions for requesting data from the API require that the list generated by create_user() be provided in the aqs_user argument.

Available Services

A full list of services provided by the AQS API can be accessed by calling list_services(). These services include sampleData, signup, list, and metaData, among others. The endpoints for each service are listed in list_endpoints(), and the variables required for each endpoint are listed in list_required_vars(). For example:

# List all services
list_services()
##  [1] "signup"                  "metaData"               
##  [3] "list"                    "monitors"               
##  [5] "sampleData"              "dailyData"              
##  [7] "annualData"              "qaBlanks"               
##  [9] "qaCollocated"            "qaFlowRateVerifications"
## [11] "qaFlowRateAudits"        "qaOnePointQcRawData"    
## [13] "qaPepAudits"
# List endpoints for "dailyData" service
list_endpoints(service="dailyData") 
## [1] "bySite"   "byCounty" "byState"  "byBox"    "byCBSA"
# List variables needed for obtaining data using the "byCounty" endpoint
list_required_vars(endpoint="byCounty") 
## [1] "param"  "bdate"  "edate"  "state"  "county"

Available Data

Information on parameter codes and required input for defining data requests can be obtained from the API using aqs_list(), aqs_list_parameters(), and the related functions.

For example, to list the available parameter classes (groups of parameters), use the function

> aqs_list_classes(aqs_user=myuser)
                      code                                                     value_represented
2              AIRNOW MAPS   The parameters represented on AirNow maps (88101, 88502, and 44201)
27                     ALL                                       Select all Parameters Available
3           AQI POLLUTANTS                                   Pollutants that have an AQI Defined
4                CORE_HAPS                                            Urban Air Toxic Pollutants
5                 CRITERIA                                                   Criteria Pollutants
6                 CSN DART       List of CSN speciation parameters to populate the STI DART tool
7                 FORECAST                        Parameters routinely extracted by AirNow (STI)
8                     HAPS                                              Hazardous Air Pollutants
9           IMPROVE CARBON                                             IMPROVE Carbon Parameters
10      IMPROVE_SPECIATION                  PM2.5 Speciated Parameters Measured at IMPROVE sites
11                     MET                                             Meteorological Parameters
12         NATTS CORE HAPS             The core list of toxics of interest to the NATTS program.
13          NATTS REQUIRED Required compounds to be collected in the National Air Toxics Network
14                    PAMS                            Photochemical Assessment Monitoring System
15                PAMS_VOC               Volatile Organic Compound subset of the PAMS Parameters
16               PM COARSE                                     PM between 2.5 and 10 micrometers
17         PM10 SPECIATION                                             PM10 Speciated Parameters
18       PM2.5 CONT NONREF                                PM2.5 Continuous, Nonreference Methods
19           PM2.5 MASS/QA                                          PM2.5 Mass and QA Parameters
20       SCHOOL AIR TOXICS                                  School Air Toxics Program Parameters
21              SPECIATION                                            PM2.5 Speciated Parameters
22       SPECIATION CARBON                                    PM2.5 Speciation Carbon Parameters
23 SPECIATION CATION/ANION                              PM2.5 Speciation Cation/Anion Parameters
24       SPECIATION METALS                                     PM2.5 Speciation Metal Parameters
25          UATMP CARBONYL                         Urban Air Toxics Monitoring Program Carbonyls
26               UATMP VOC                              Urban Air Toxics Monitoring Program VOCs

To list the codes for the criteria air pollutants, use:

aqs_list_parameters(myuser, pc="CRITERIA")
##     code        value_represented
## 2  14129            Lead (TSP) LC
## 21 42101          Carbon monoxide
## 3  42401           Sulfur dioxide
## 4  42602   Nitrogen dioxide (NO2)
## 5  44201                    Ozone
## 6  81102    PM10 Total 0-10um STP
## 7  85129     Lead PM10 LC FRM/FEM
## 8  88101 PM2.5 - Local Conditions

Requesting Data

The primary functions for requesting measurements stored in the AQS database are aqs_annualData(), aqs_dailyData(), and aqs_sampleData(). Variations of each function exist for queries targeting a specific criteria, e.g. aqs_annualData_byState(). The underlying function that queries the API is aqs_get(), which can be called directly if desired.

Example Data Requests

Example 1

Requesting all PM2.5 measurements (parameter code 88101) for California (state code 06) from January 1, 2017 through January 4, 2017:

# Sample Data -- By State
s1 <- aqs_sampleData(aqs_user=myuser,
                     endpoint="byState",
                     state="06",
                     bdate="20170101",
                     edate="20170104",
                     param="88101")
dim(s1)
## [1] 6915   27
s1[1:2,]
##       state_code county_code site_number parameter_code poc latitude longitude
## 2             06         075        0005          88101   3 37.76595  -122.399
## 21000         06         075        0005          88101   3 37.76595  -122.399
##       datum                parameter date_local time_local   date_gmt time_gmt
## 2     WGS84 PM2.5 - Local Conditions 2017-01-01      00:00 2017-01-01    08:00
## 21000 WGS84 PM2.5 - Local Conditions 2017-01-01      01:00 2017-01-01    09:00
##       sample_measurement            units_of_measure sample_duration
## 2                     11 Micrograms/cubic meter (LC)          1 HOUR
## 21000                  6 Micrograms/cubic meter (LC)          1 HOUR
##       sample_frequency detection_limit uncertainty qualifier method_type
## 2               HOURLY               5          NA      <NA>         FEM
## 21000           HOURLY               5          NA      <NA>         FEM
##       method_code                                                  method
## 2             170 Met One BAM-1020 Mass Monitor w/VSCC - Beta Attenuation
## 21000         170 Met One BAM-1020 Mass Monitor w/VSCC - Beta Attenuation
##            state        county date_of_last_change cbsa_code
## 2     California San Francisco          2017-03-22     41860
## 21000 California San Francisco          2017-03-22     41860

Example 2

Requesting all NO2 measurements (parameter code 42602) for King County, WA from January 1, 2017 through January 4, 2017. First, we find out the state code for Washington:

state_fips <- aqs_list_states(myuser)
tail(state_fips, 10)
##    code value_represented
## 47   51          Virginia
## 48   53        Washington
## 49   54     West Virginia
## 50   55         Wisconsin
## 51   56           Wyoming
## 52   66              Guam
## 53   72       Puerto Rico
## 54   78    Virgin Islands
## 55   80 Country Of Mexico
## 56   CC            Canada

From this list, we get that the state code for Washington is "53". Now we find the code for King County:

wa_counties <- aqs_list_counties(myuser, state="53")
head(wa_counties)
##     code value_represented
## 2    001             Adams
## 210  003            Asotin
## 3    005            Benton
## 4    007            Chelan
## 5    009           Clallam
## 6    011             Clark

From these results we see the King County code is "033".We now request the sample:

s2 <- aqs_sampleData(aqs_user=myuser,
                     endpoint="byCounty",
                     state="53",
                     county="033",
                     bdate="20170101",
                     edate="20170110",
                     param="42602")
s2[1:2,]
##      state_code county_code site_number parameter_code poc latitude longitude
## 2            53         033        0030          42602   1 47.59722 -122.3197
## 2100         53         033        0030          42602   1 47.59722 -122.3197
##      datum              parameter date_local time_local   date_gmt time_gmt
## 2    WGS84 Nitrogen dioxide (NO2) 2017-01-01      00:00 2017-01-01    08:00
## 2100 WGS84 Nitrogen dioxide (NO2) 2017-01-01      01:00 2017-01-01    09:00
##      sample_measurement  units_of_measure sample_duration sample_frequency
## 2                   9.5 Parts per billion          1 HOUR           HOURLY
## 2100                 NA Parts per billion          1 HOUR           HOURLY
##      detection_limit uncertainty                                  qualifier
## 2               0.05          NA                                       <NA>
## 2100            0.05          NA AI - Insufficient Data (cannot calculate).
##      method_type method_code
## 2            FRM         599
## 2100         FRM         599
##                                                        method      state county
## 2    Instrumental - Chemiluminescence Teledyne API 200 EU/501 Washington   King
## 2100 Instrumental - Chemiluminescence Teledyne API 200 EU/501 Washington   King
##      date_of_last_change cbsa_code
## 2             2017-04-25     42660
## 2100          2017-04-25     42660

Example 3

We could also request data for site 530330030 in King County:

s3 <- aqs_sampleData(aqs_user=myuser,
                     endpoint="bySite",
                     state="53",
                     county="033",
                     site="0030",
                     bdate="20170201",
                     edate="20170210",
                     param="42602")
s3[1:2,]
##     state_code county_code site_number parameter_code poc latitude longitude
## 2           53         033        0030          42602   1 47.59722 -122.3197
## 241         53         033        0030          42602   1 47.59722 -122.3197
##     datum              parameter date_local time_local   date_gmt time_gmt
## 2   WGS84 Nitrogen dioxide (NO2) 2017-02-01      00:00 2017-02-01    08:00
## 241 WGS84 Nitrogen dioxide (NO2) 2017-02-01      01:00 2017-02-01    09:00
##     sample_measurement  units_of_measure sample_duration sample_frequency
## 2                   20 Parts per billion          1 HOUR           HOURLY
## 241                 NA Parts per billion          1 HOUR           HOURLY
##     detection_limit uncertainty                                  qualifier
## 2              0.05          NA                                       <NA>
## 241            0.05          NA AI - Insufficient Data (cannot calculate).
##     method_type method_code
## 2           FRM         599
## 241         FRM         599
##                                                       method      state county
## 2   Instrumental - Chemiluminescence Teledyne API 200 EU/501 Washington   King
## 241 Instrumental - Chemiluminescence Teledyne API 200 EU/501 Washington   King
##     date_of_last_change cbsa_code
## 2            2017-05-09     42660
## 241          2017-05-09     42660

Example 4

Data can be requested by metropolitan area, specifically Core-based Statistical Area (CBSA).

aqs_list(myuser, endpoint="cbsas")

From this output (hidden here for brevity), we see that the CBSA code for the greater Atlanta, GA region is 12060. We can now request all PM2.5 observations from March 1, 2017 in the Atlanta-Sandy Springs-Roswell CBSA:

s4 <- aqs_sampleData(aqs_user=myuser,
                     endpoint="byCBSA",
                     cbsa="12060",
                     bdate="20170301",
                     edate="20170301",
                     param="88101")
s4[1:2,]
##    state_code county_code site_number parameter_code poc latitude longitude
## 2          13         089        0002          88101   3  33.6878  -84.2905
## 26         13         089        0002          88101   3  33.6878  -84.2905
##    datum                parameter date_local time_local   date_gmt time_gmt
## 2  NAD83 PM2.5 - Local Conditions 2017-03-01      00:00 2017-03-01    05:00
## 26 NAD83 PM2.5 - Local Conditions 2017-03-01      01:00 2017-03-01    06:00
##    sample_measurement            units_of_measure sample_duration
## 2                  NA Micrograms/cubic meter (LC)          1 HOUR
## 26                 NA Micrograms/cubic meter (LC)          1 HOUR
##    sample_frequency detection_limit uncertainty                 qualifier
## 2            HOURLY               5          NA AN - Machine Malfunction.
## 26           HOURLY               5          NA AN - Machine Malfunction.
##    method_type method_code
## 2          FEM         170
## 26         FEM         170
##                                                     method   state county
## 2  Met One BAM-1020 Mass Monitor w/VSCC - Beta Attenuation Georgia DeKalb
## 26 Met One BAM-1020 Mass Monitor w/VSCC - Beta Attenuation Georgia DeKalb
##    date_of_last_change cbsa_code
## 2           2018-01-31     12060
## 26          2018-01-31     12060

About

R Package for Accessing EPA AQS data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages