Improve your machine learning skills and solve over 100 exercises in python, numpy, pandas and scikit-learn!
Welcome to the 100+ Exercises - Python - Data Science - scikit-learn course where you can test your Python programming skills in machine learning, specifically in scikit-learn package.
- preparing data to machine learning models
- working with missing values, SimpleImputer class
- classification, regression, clustering
- discretization
- feature extraction
- PolynomialFeatures class
- LabelEncoder class
- OneHotEncoder class
- StandardScaler class
- dummy encoding
- splitting data into train and test set
- LogisticRegression class
- confusion matrix
- classification report
- LinearRegression class
- MAE - Mean Absolute Error
- MSE - Mean Squared Error
- sigmoid() function
- entorpy
- accuracy score
- DecisionTreeClassifier class
- GridSearchCV class
- RandomForestClassifier class
- CountVectorizer class
- TfidfVectorizer class
- KMeans class
- AgglomerativeClustering class
- HierarchicalClustering class
- DBSCAN class
- dimensionality reduction, PCA analysis
- Association Rules
- LocalOutlierFactor class
- IsolationForest class
- KNeighborsClassifier class
- MultinomialNB class
- GradientBoostingRegressor class
This course is designed for people who have basic knowledge in Python, numpy, pandas and scikit-learn. It consists of over 100 exercises with solutions. This is a great test for people who are learning machine learning and are looking for new challenges. Exercises are also a good test before the interview. Many popular topics were covered in this course.
If you're wondering if it's worth taking a step towards Python, don't hesitate any longer and take the challenge today.