Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
executable file 2449 lines (2214 sloc) 75.4 KB
#! /bin/sh
#
# Copyright (c) 2014, 2015, 2016 Ingo Schwarze <schwarze@openbsd.org>
# Copyright (c) 2017, 2018 Kristaps Dzonsons <kristaps@bsd.lv>
#
# Permission to use, copy, modify, and distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
OCONFIGURE_VERSION="0.3.5"
#
# This script outputs two files: config.h and Makefile.configure.
# It tries to read from configure.local, which contains predefined
# values we won't autoconfigure.
#
# If you want to use configure with your project, have your GNUmakefile
# or BSDmakefile---whichever---try to import/include Makefile.configure
# at the beginning of the file.
#
# Like so (note no quotes, no period, etc.):
#
# include Makefile.configure
#
# If it exists, configure was run; otherwise, it wasn't.
#
# You'll probably want to change parts of this file. I've noted the
# parts that you'll probably change in the section documentation.
#
# See https://github.com/kristapsdz/oconfigure for more.
set -e
#----------------------------------------------------------------------
# Prepare for running: move aside previous configure runs.
# Output file descriptor usage:
# 1 (stdout): config.h or Makefile.configure
# 2 (stderr): original stderr, usually to the console
# 3: config.log
# You DO NOT want to change this.
#----------------------------------------------------------------------
[ -w config.log ] && mv config.log config.log.old
[ -w config.h ] && mv config.h config.h.old
exec 3> config.log
echo "config.log: writing..."
# GNU submake prints different output if invoked recursively, which
# messes up CC and CFLAGS detection. Pass --no-print-directory if
# we have a MAKELEVEL (GNU and FreeBSD make) and the argument is
# allowed.
MAKE_FLAGS=""
if [ -n "${MAKELEVEL}" ]; then
if [ "${MAKELEVEL}" -gt 0 ] ; then
MAKE_FLAGS="--no-print-directory"
echo "all:" | make ${MAKE_FLAGS} -sf - 2>/dev/null || MAKE_FLAGS=""
fi
fi
if [ -n "$MAKE_FLAGS" ]; then
echo "GNU submake detected: using --no-print-directory" 1>&2
echo "GNU submake detected: using --no-print-directory" 1>&3
fi
#----------------------------------------------------------------------
# Initialize all variables here such that nothing can leak in from the
# environment except for CC and CFLAGS, which we might have passed in.
#----------------------------------------------------------------------
CC=`printf "all:\\n\\t@echo \\\$(CC)\\n" | make ${MAKE_FLAGS} -sf -`
CFLAGS=`printf "all:\\n\\t@echo \\\$(CFLAGS)\\n" | make ${MAKE_FLAGS} -sf -`
CFLAGS="${CFLAGS} -g -W -Wall -Wextra -Wmissing-prototypes -Wstrict-prototypes"
CFLAGS="${CFLAGS} -Wwrite-strings -Wno-unused-parameter"
LDADD=
LDADD_B64_NTOP=
LDADD_CRYPT=
LDADD_MD5=
LDADD_SHA2=
LDADD_LIB_SOCKET=
LDADD_STATIC=
CPPFLAGS=
LDFLAGS=
DESTDIR=
PREFIX="/usr/local"
BINDIR=
SBINDIR=
INCLUDEDIR=
LIBDIR=
MANDIR=
SHAREDIR=
INSTALL="install"
INSTALL_PROGRAM=
INSTALL_LIB=
INSTALL_MAN=
INSTALL_DATA=
# SunOS sets "cc", but this doesn't exist.
# It does have gcc, so try that instead.
# Prefer clang, though.
command -v ${CC} 2>/dev/null 1>&2 || {
echo "${CC} not found: trying clang" 1>&2
echo "${CC} not found: trying clang" 1>&3
CC=clang
command -v ${CC} 2>/dev/null 1>&2 || {
echo "${CC} not found: trying gcc" 1>&2
echo "${CC} not found: trying gcc" 1>&3
CC=gcc
command -v ${CC} 2>/dev/null 1>&2 || {
echo "gcc not found: giving up" 1>&2
echo "gcc not found: giving up" 1>&3
exit 1
}
}
}
#----------------------------------------------------------------------
# Allow certain variables to be overriden on the command line.
#----------------------------------------------------------------------
for keyvals in "$@"
do
key=`echo $keyvals | cut -s -d '=' -f 1`
if [ -z "$key" ]
then
echo "$0: invalid key-value: $keyvals" 1>&2
exit 1
fi
val=`echo $keyvals | cut -d '=' -f 2-`
case "$key" in
LDADD)
LDADD="$val" ;;
LDFLAGS)
LDFLAGS="$val" ;;
CPPFLAGS)
CPPFLAGS="$val" ;;
DESTDIR)
DESTDIR="$val" ;;
PREFIX)
PREFIX="$val" ;;
MANDIR)
MANDIR="$val" ;;
LIBDIR)
LIBDIR="$val" ;;
BINDIR)
BINDIR="$val" ;;
SHAREDIR)
SHAREDIR="$val" ;;
SBINDIR)
SBINDIR="$val" ;;
INCLUDEDIR)
INCLUDEDIR="$val" ;;
*)
echo "$0: invalid key: $key" 1>&2
exit 1
esac
done
#----------------------------------------------------------------------
# These are the values that will be pushed into config.h after we test
# for whether they're supported or not.
# Each of these must have a runtest(), below.
# Please sort by alpha, for clarity.
# You WANT to change this.
#----------------------------------------------------------------------
HAVE_ARC4RANDOM=
HAVE_B64_NTOP=
HAVE_CAPSICUM=
HAVE_CRYPT=
HAVE_ENDIAN_H=
HAVE_ERR=
HAVE_EXPLICIT_BZERO=
HAVE_FTS=
HAVE_GETEXECNAME=
HAVE_GETPROGNAME=
HAVE_INFTIM=
HAVE_MD5=
HAVE_MEMMEM=
HAVE_MEMRCHR=
HAVE_MEMSET_S=
HAVE_MKFIFOAT=
HAVE_MKNODAT=
HAVE_OSBYTEORDER_H=
HAVE_PATH_MAX=
HAVE_PLEDGE=
HAVE_PROGRAM_INVOCATION_SHORT_NAME=
HAVE_READPASSPHRASE=
HAVE_REALLOCARRAY=
HAVE_RECALLOCARRAY=
HAVE_SANDBOX_INIT=
HAVE_SECCOMP_FILTER=
HAVE_SETRESGID=
HAVE_SETRESUID=
HAVE_SOCK_NONBLOCK=
HAVE_SHA2=
HAVE_SHA2_H=
HAVE_STRLCAT=
HAVE_STRLCPY=
HAVE_STRNDUP=
HAVE_STRNLEN=
HAVE_STRTONUM=
HAVE_SYS_BYTEORDER_H=
HAVE_SYS_ENDIAN_H=
HAVE_SYS_MKDEV_H=
HAVE_SYS_QUEUE=
HAVE_SYS_SYSMACROS=
HAVE_SYS_TREE=
HAVE_SYSTRACE=0
HAVE_UNVEIL=
HAVE_WAIT_ANY=
HAVE___PROGNAME=
#----------------------------------------------------------------------
# Allow configure.local to override all variables, default settings,
# command-line arguments, and tested features, above.
# You PROBABLY DO NOT want to change this.
#----------------------------------------------------------------------
if [ -r ./configure.local ]; then
echo "configure.local: reading..." 1>&2
echo "configure.local: reading..." 1>&3
cat ./configure.local 1>&3
. ./configure.local
else
echo "configure.local: no (fully automatic configuration)" 1>&2
echo "configure.local: no (fully automatic configuration)" 1>&3
fi
echo 1>&3
#----------------------------------------------------------------------
# Infrastructure for running tests.
# These consists of a series of functions that will attempt to run the
# given test file and record its exit into a HAVE_xxx variable.
# You DO NOT want to change this.
#----------------------------------------------------------------------
COMP="${CC} ${CFLAGS} ${CPPFLAGS} -Wno-unused -Werror"
# Check whether this HAVE_ setting is manually overridden.
# If yes, use the override, if no, do not decide anything yet.
# Arguments: lower-case test name, manual value
ismanual() {
[ -z "${3}" ] && return 1
echo "${1}: manual (HAVE_${2}=${3})" 1>&2
echo "${1}: manual (HAVE_${2}=${3})" 1>&3
echo 1>&3
return 0
}
# Run a single autoconfiguration test.
# In case of success, enable the feature.
# In case of failure, do not decide anything yet.
# Arguments: lower-case test name, upper-case test name, additional
# CFLAGS, additional LIBS.
singletest() {
extralib=""
cat 1>&3 << __HEREDOC__
${1}: testing...
${COMP} -DTEST_${2} ${3} -o test-${1} tests.c ${LDFLAGS} ${4}
__HEREDOC__
if ${COMP} -DTEST_${2} ${3} -o "test-${1}" tests.c ${LDFLAGS} ${4} 1>&3 2>&3; then
echo "${1}: ${CC} succeeded" 1>&3
else
if [ -n "${5}" ] ; then
echo "${1}: ${CC} failed with $? (retrying)" 1>&3
cat 1>&3 << __HEREDOC__
${1}: testing...
${COMP} -DTEST_${2} ${3} -o test-${1} tests.c ${LDFLAGS} ${5}
__HEREDOC__
if ${COMP} -DTEST_${2} ${3} -o "test-${1}" tests.c ${LDFLAGS} ${5} 1>&3 2>&3; then
echo "${1}: ${CC} succeeded" 1>&3
extralib="(with ${5})"
else
echo "${1}: ${CC} failed with $?" 1>&3
echo 1>&3
return 1
fi
else
echo "${1}: ${CC} failed with $?" 1>&3
echo 1>&3
return 1
fi
fi
if [ -n "${extralib}" ]
then
eval "LDADD_${2}=\"${5}\""
elif [ -n "${4}" ]
then
eval "LDADD_${2}=\"${4}\""
fi
echo "${1}: yes ${extralib}" 1>&2
echo "${1}: yes ${extralib}" 1>&3
echo 1>&3
eval HAVE_${2}=1
rm "test-${1}"
return 0
}
# Run a complete autoconfiguration test, including the check for
# a manual override and disabling the feature on failure.
# Arguments: lower case name, upper case name, additional CFLAGS,
# additional LDADD, alternative LDADD.
runtest() {
eval _manual=\${HAVE_${2}}
ismanual "${1}" "${2}" "${_manual}" && return 0
singletest "${1}" "${2}" "${3}" "${4}" "${5}" && return 0
echo "${1}: no" 1>&2
eval HAVE_${2}=0
return 1
}
#----------------------------------------------------------------------
# Begin running the tests themselves.
# All of your tests must be defined here.
# Please sort as the HAVE_xxxx values were defined.
# You WANT to change this.
# It consists of the following columns:
# runtest
# (1) test file
# (2) macro to set
# (3) argument to cc *before* -o
# (4) argument to cc *after*
# (5) alternative argument to cc *after*
#----------------------------------------------------------------------
runtest arc4random ARC4RANDOM || true
runtest b64_ntop B64_NTOP "" "" "-lresolv" || true
runtest capsicum CAPSICUM || true
runtest crypt CRYPT "" "" "-lcrypt" || true
runtest endian_h ENDIAN_H || true
runtest err ERR || true
runtest explicit_bzero EXPLICIT_BZERO || true
runtest fts FTS || true
runtest getexecname GETEXECNAME || true
runtest getprogname GETPROGNAME || true
runtest INFTIM INFTIM || true
runtest lib_socket LIB_SOCKET "" "" "-lsocket -lnsl" || true
runtest md5 MD5 "" "" "-lmd" || true
runtest memmem MEMMEM || true
runtest memrchr MEMRCHR || true
runtest memset_s MEMSET_S || true
runtest mkfifoat MKFIFOAT || true
runtest mknodat MKNODAT || true
runtest osbyteorder_h OSBYTEORDER_H || true
runtest PATH_MAX PATH_MAX || true
runtest pledge PLEDGE || true
runtest program_invocation_short_name PROGRAM_INVOCATION_SHORT_NAME || true
runtest readpassphrase READPASSPHRASE || true
runtest reallocarray REALLOCARRAY || true
runtest recallocarray RECALLOCARRAY || true
runtest sandbox_init SANDBOX_INIT "-Wno-deprecated" || true
runtest seccomp-filter SECCOMP_FILTER || true
runtest setresgid SETRESGID || true
runtest setresuid SETRESUID || true
runtest sha2 SHA2 "" "" "-lmd" || true
runtest SOCK_NONBLOCK SOCK_NONBLOCK || true
runtest static STATIC "" "-static" || true
runtest strlcat STRLCAT || true
runtest strlcpy STRLCPY || true
runtest strndup STRNDUP || true
runtest strnlen STRNLEN || true
runtest strtonum STRTONUM || true
runtest sys_byteorder_h SYS_BYTEORDER_H || true
runtest sys_endian_h SYS_ENDIAN_H || true
runtest sys_mkdev_h SYS_MKDEV_H || true
runtest sys_sysmacros_h SYS_SYSMACROS_H || true
runtest sys_queue SYS_QUEUE || true
runtest sys_tree SYS_TREE || true
runtest unveil UNVEIL || true
runtest WAIT_ANY WAIT_ANY || true
runtest __progname __PROGNAME || true
#----------------------------------------------------------------------
# Output writing: generate the config.h file.
# This file contains all of the HAVE_xxxx variables necessary for
# compiling your source.
# You must include "config.h" BEFORE any other variables.
# You WANT to change this.
#----------------------------------------------------------------------
exec > config.h
# Start with prologue.
cat << __HEREDOC__
#ifndef OCONFIGURE_CONFIG_H
#define OCONFIGURE_CONFIG_H
#ifdef __cplusplus
# error "Do not use C++: this is a C application."
#endif
#if !defined(__GNUC__) || (__GNUC__ < 4)
# define __attribute__(x)
#endif
#if defined(__linux__) || defined(__MINT__)
# define _GNU_SOURCE /* memmem, memrchr, setresuid... */
# define _DEFAULT_SOURCE /* le32toh, crypt, ... */
#endif
#if defined(__NetBSD__)
# define _OPENBSD_SOURCE /* reallocarray, etc. */
#endif
#if defined(__sun)
# ifndef _XOPEN_SOURCE /* SunOS already defines */
# define _XOPEN_SOURCE /* XPGx */
# endif
# define _XOPEN_SOURCE_EXTENDED 1 /* XPG4v2 */
# ifndef __EXTENSIONS__ /* SunOS already defines */
# define __EXTENSIONS__ /* reallocarray, etc. */
# endif
#endif
#if !defined(__BEGIN_DECLS)
# define __BEGIN_DECLS
#endif
#if !defined(__END_DECLS)
# define __END_DECLS
#endif
__HEREDOC__
# This is just for size_t, mode_t, and dev_t.
# Most of these functions, in the real world, pull in <string.h> or
# someting that pulls in support for size_t.
# Our function declarations are standalone, so specify them here.
if [ ${HAVE_FTS} -eq 0 -o \
${HAVE_MD5} -eq 0 -o \
${HAVE_MEMMEM} -eq 0 -o \
${HAVE_MEMRCHR} -eq 0 -o \
${HAVE_MKFIFOAT} -eq 0 -o \
${HAVE_MKNODAT} -eq 0 -o \
${HAVE_READPASSPHRASE} -eq 0 -o \
${HAVE_REALLOCARRAY} -eq 0 -o \
${HAVE_RECALLOCARRAY} -eq 0 -o \
${HAVE_SETRESGID} -eq 0 -o \
${HAVE_SETRESUID} -eq 0 -o \
${HAVE_SHA2} -eq 0 -o \
${HAVE_STRLCAT} -eq 0 -o \
${HAVE_STRLCPY} -eq 0 -o \
${HAVE_STRNDUP} -eq 0 -o \
${HAVE_STRNLEN} -eq 0 ]
then
echo "#include <sys/types.h> /* size_t, mode_t, dev_t */ "
echo
fi
if [ ${HAVE_MD5} -eq 0 -o \
${HAVE_SHA2} -eq 0 ]
then
echo "#include <stdint.h> /* C99 [u]int[nn]_t types */"
echo
fi
if [ ${HAVE_ERR} -eq 0 ]
then
echo "#include <stdarg.h> /* err(3) */"
echo
fi
# Now we handle our HAVE_xxxx values.
# Most will just be defined as 0 or 1.
if [ ${HAVE_PATH_MAX} -eq 0 ]
then
echo "#define PATH_MAX 4096"
echo
fi
if [ ${HAVE_WAIT_ANY} -eq 0 ]
then
echo "#define WAIT_ANY (-1) /* sys/wait.h */"
echo "#define WAIT_MYPGRP 0"
echo
fi
if [ ${HAVE_INFTIM} -eq 0 ]
then
echo "#define INFTIM (-1) /* poll.h */"
echo
fi
cat << __HEREDOC__
/*
* Results of configuration feature-testing.
*/
#define HAVE_ARC4RANDOM ${HAVE_ARC4RANDOM}
#define HAVE_B64_NTOP ${HAVE_B64_NTOP}
#define HAVE_CAPSICUM ${HAVE_CAPSICUM}
#define HAVE_CRYPT ${HAVE_CRYPT}
#define HAVE_ENDIAN_H ${HAVE_ENDIAN_H}
#define HAVE_ERR ${HAVE_ERR}
#define HAVE_EXPLICIT_BZERO ${HAVE_EXPLICIT_BZERO}
#define HAVE_FTS ${HAVE_FTS}
#define HAVE_GETEXECNAME ${HAVE_GETEXECNAME}
#define HAVE_GETPROGNAME ${HAVE_GETPROGNAME}
#define HAVE_INFTIM ${HAVE_INFTIM}
#define HAVE_MD5 ${HAVE_MD5}
#define HAVE_MEMMEM ${HAVE_MEMMEM}
#define HAVE_MEMRCHR ${HAVE_MEMRCHR}
#define HAVE_MEMSET_S ${HAVE_MEMSET_S}
#define HAVE_MKFIFOAT ${HAVE_MKFIFOAT}
#define HAVE_MKNODAT ${HAVE_MKNODAT}
#define HAVE_OSBYTEORDER_H ${HAVE_OSBYTEORDER_H}
#define HAVE_PATH_MAX ${HAVE_PATH_MAX}
#define HAVE_PLEDGE ${HAVE_PLEDGE}
#define HAVE_PROGRAM_INVOCATION_SHORT_NAME ${HAVE_PROGRAM_INVOCATION_SHORT_NAME}
#define HAVE_READPASSPHRASE ${HAVE_READPASSPHRASE}
#define HAVE_REALLOCARRAY ${HAVE_REALLOCARRAY}
#define HAVE_RECALLOCARRAY ${HAVE_RECALLOCARRAY}
#define HAVE_SANDBOX_INIT ${HAVE_SANDBOX_INIT}
#define HAVE_SECCOMP_FILTER ${HAVE_SECCOMP_FILTER}
#define HAVE_SETRESGID ${HAVE_SETRESGID}
#define HAVE_SETRESUID ${HAVE_SETRESUID}
#define HAVE_SHA2 ${HAVE_SHA2}
#define HAVE_SHA2_H ${HAVE_SHA2}
#define HAVE_SOCK_NONBLOCK ${HAVE_SOCK_NONBLOCK}
#define HAVE_STRLCAT ${HAVE_STRLCAT}
#define HAVE_STRLCPY ${HAVE_STRLCPY}
#define HAVE_STRNDUP ${HAVE_STRNDUP}
#define HAVE_STRNLEN ${HAVE_STRNLEN}
#define HAVE_STRTONUM ${HAVE_STRTONUM}
#define HAVE_SYS_BYTEORDER_H ${HAVE_SYS_BYTEORDER_H}
#define HAVE_SYS_ENDIAN_H ${HAVE_SYS_ENDIAN_H}
#define HAVE_SYS_MKDEV_H ${HAVE_SYS_MKDEV_H}
#define HAVE_SYS_QUEUE ${HAVE_SYS_QUEUE}
#define HAVE_SYS_SYSMACROS_H ${HAVE_SYS_SYSMACROS_H}
#define HAVE_SYS_TREE ${HAVE_SYS_TREE}
#define HAVE_SYSTRACE ${HAVE_SYSTRACE}
#define HAVE_UNVEIL ${HAVE_UNVEIL}
#define HAVE_WAIT_ANY ${HAVE_WAIT_ANY}
#define HAVE___PROGNAME ${HAVE___PROGNAME}
__HEREDOC__
# Compat for libkern/OSByteOrder.h in place of endian.h.
[ ${HAVE_OSBYTEORDER_H} -eq 1 -a \
${HAVE_ENDIAN_H} -eq 0 -a \
${HAVE_SYS_BYTEORDER_H} -eq 0 -a \
${HAVE_SYS_ENDIAN_H} -eq 0 ] \
&& cat << __HEREDOC__
/*
* endian.h compatibility with libkern/OSByteOrder.h.
*/
#define htobe16(x) OSSwapHostToBigInt16(x)
#define htole16(x) OSSwapHostToLittleInt16(x)
#define be16toh(x) OSSwapBigToHostInt16(x)
#define le16toh(x) OSSwapLittleToHostInt16(x)
#define htobe32(x) OSSwapHostToBigInt32(x)
#define htole32(x) OSSwapHostToLittleInt32(x)
#define be32toh(x) OSSwapBigToHostInt32(x)
#define le32toh(x) OSSwapLittleToHostInt32(x)
#define htobe64(x) OSSwapHostToBigInt64(x)
#define htole64(x) OSSwapHostToLittleInt64(x)
#define be64toh(x) OSSwapBigToHostInt64(x)
#define le64toh(x) OSSwapLittleToHostInt64(x)
__HEREDOC__
[ ${HAVE_SYS_BYTEORDER_H} -eq 1 -a \
${HAVE_ENDIAN_H} -eq 0 -a \
${HAVE_OSBYTEORDER_H} -eq 0 -a \
${HAVE_SYS_ENDIAN_H} -eq 0 ] \
&& cat << __HEREDOC__
/*
* endian.h compatibility with sys/byteorder.h.
*/
#define htobe16(x) BE_16(x)
#define htole16(x) LE_16(x)
#define be16toh(x) BE_16(x)
#define le16toh(x) LE_16(x)
#define htobe32(x) BE_32(x)
#define htole32(x) LE_32(x)
#define be32toh(x) BE_32(x)
#define le32toh(x) LE_32(x)
#define htobe64(x) BE_64(x)
#define htole64(x) LE_64(x)
#define be64toh(x) BE_64(x)
#define le64toh(x) LE_64(x)
__HEREDOC__
# Make minor()/major()/makedev() easier to use.
cat << __HEREDOC__
/*
* Handle the various major()/minor() header files.
* Use sys/mkdev.h before sys/sysmacros.h because SunOS
* has both, where only the former works properly.
*/
#if HAVE_SYS_MKDEV_H
# define COMPAT_MAJOR_MINOR_H <sys/mkdev.h>
#elif HAVE_SYS_SYSMACROS_H
# define COMPAT_MAJOR_MINOR_H <sys/sysmacros.h>
#else
# define COMPAT_MAJOR_MINOR_H <sys/types.h>
#endif
__HEREDOC__
# Make endian.h easier by providing a COMPAT_ENDIAN_H.
cat << __HEREDOC__
/*
* Make it easier to include endian.h forms.
*/
#if HAVE_ENDIAN_H
# define COMPAT_ENDIAN_H <endian.h>
#elif HAVE_SYS_ENDIAN_H
# define COMPAT_ENDIAN_H <sys/endian.h>
#elif HAVE_OSBYTEORDER_H
# define COMPAT_ENDIAN_H <libkern/OSByteOrder.h>
#elif HAVE_SYS_BYTEORDER_H
# define COMPAT_ENDIAN_H <sys/byteorder.h>
#else
# warning No suitable endian.h could be found.
# warning Please e-mail the maintainers with your OS.
# define COMPAT_ENDIAN_H <endian.h>
#endif
__HEREDOC__
# Now we do our function declarations for missing functions.
[ ${HAVE_ERR} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility functions for err(3).
*/
extern void err(int, const char *, ...) __attribute__((noreturn));
extern void errc(int, int, const char *, ...) __attribute__((noreturn));
extern void errx(int, const char *, ...) __attribute__((noreturn));
extern void verr(int, const char *, va_list) __attribute__((noreturn));
extern void verrc(int, int, const char *, va_list) __attribute__((noreturn));
extern void verrx(int, const char *, va_list) __attribute__((noreturn));
extern void warn(const char *, ...);
extern void warnx(const char *, ...);
extern void warnc(int, const char *, ...);
extern void vwarn(const char *, va_list);
extern void vwarnc(int, const char *, va_list);
extern void vwarnx(const char *, va_list);
__HEREDOC__
[ ${HAVE_MD5} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for md4(3).
*/
#define MD5_BLOCK_LENGTH 64
#define MD5_DIGEST_LENGTH 16
#define MD5_DIGEST_STRING_LENGTH (MD5_DIGEST_LENGTH * 2 + 1)
typedef struct MD5Context {
uint32_t state[4];
uint64_t count;
uint8_t buffer[MD5_BLOCK_LENGTH];
} MD5_CTX;
extern void MD5Init(MD5_CTX *);
extern void MD5Update(MD5_CTX *, const uint8_t *, size_t);
extern void MD5Pad(MD5_CTX *);
extern void MD5Transform(uint32_t [4], const uint8_t [MD5_BLOCK_LENGTH]);
extern char *MD5End(MD5_CTX *, char *);
extern void MD5Final(uint8_t [MD5_DIGEST_LENGTH], MD5_CTX *);
__HEREDOC__
[ ${HAVE_SHA2} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for sha2(3).
*/
/*** SHA-256/384/512 Various Length Definitions ***********************/
#define SHA256_BLOCK_LENGTH 64
#define SHA256_DIGEST_LENGTH 32
#define SHA256_DIGEST_STRING_LENGTH (SHA256_DIGEST_LENGTH * 2 + 1)
#define SHA384_BLOCK_LENGTH 128
#define SHA384_DIGEST_LENGTH 48
#define SHA384_DIGEST_STRING_LENGTH (SHA384_DIGEST_LENGTH * 2 + 1)
#define SHA512_BLOCK_LENGTH 128
#define SHA512_DIGEST_LENGTH 64
#define SHA512_DIGEST_STRING_LENGTH (SHA512_DIGEST_LENGTH * 2 + 1)
#define SHA512_256_BLOCK_LENGTH 128
#define SHA512_256_DIGEST_LENGTH 32
#define SHA512_256_DIGEST_STRING_LENGTH (SHA512_256_DIGEST_LENGTH * 2 + 1)
/*** SHA-224/256/384/512 Context Structure *******************************/
typedef struct _SHA2_CTX {
union {
uint32_t st32[8];
uint64_t st64[8];
} state;
uint64_t bitcount[2];
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA2_CTX;
void SHA256Init(SHA2_CTX *);
void SHA256Transform(uint32_t state[8], const uint8_t [SHA256_BLOCK_LENGTH]);
void SHA256Update(SHA2_CTX *, const uint8_t *, size_t);
void SHA256Pad(SHA2_CTX *);
void SHA256Final(uint8_t [SHA256_DIGEST_LENGTH], SHA2_CTX *);
char *SHA256End(SHA2_CTX *, char *);
char *SHA256File(const char *, char *);
char *SHA256FileChunk(const char *, char *, off_t, off_t);
char *SHA256Data(const uint8_t *, size_t, char *);
void SHA384Init(SHA2_CTX *);
void SHA384Transform(uint64_t state[8], const uint8_t [SHA384_BLOCK_LENGTH]);
void SHA384Update(SHA2_CTX *, const uint8_t *, size_t);
void SHA384Pad(SHA2_CTX *);
void SHA384Final(uint8_t [SHA384_DIGEST_LENGTH], SHA2_CTX *);
char *SHA384End(SHA2_CTX *, char *);
char *SHA384File(const char *, char *);
char *SHA384FileChunk(const char *, char *, off_t, off_t);
char *SHA384Data(const uint8_t *, size_t, char *);
void SHA512Init(SHA2_CTX *);
void SHA512Transform(uint64_t state[8], const uint8_t [SHA512_BLOCK_LENGTH]);
void SHA512Update(SHA2_CTX *, const uint8_t *, size_t);
void SHA512Pad(SHA2_CTX *);
void SHA512Final(uint8_t [SHA512_DIGEST_LENGTH], SHA2_CTX *);
char *SHA512End(SHA2_CTX *, char *);
char *SHA512File(const char *, char *);
char *SHA512FileChunk(const char *, char *, off_t, off_t);
char *SHA512Data(const uint8_t *, size_t, char *);
__HEREDOC__
if [ ${HAVE_SECCOMP_FILTER} -eq 1 ]; then
arch=$(uname -m 2>/dev/null || echo unknown)
case "$arch" in
x86_64)
echo "#define SECCOMP_AUDIT_ARCH AUDIT_ARCH_X86_64"
;;
i*86)
echo "#define SECCOMP_AUDIT_ARCH AUDIT_ARCH_I386"
;;
arm*)
echo "#define SECCOMP_AUDIT_ARCH AUDIT_ARCH_ARM"
;;
aarch64)
echo "#define SECCOMP_AUDIT_ARCH AUDIT_ARCH_AARCH64"
;;
esac
echo
fi
[ ${HAVE_B64_NTOP} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for b64_ntop(3).
*/
extern int b64_ntop(unsigned char const *, size_t, char *, size_t);
extern int b64_pton(char const *, unsigned char *, size_t);
__HEREDOC__
[ ${HAVE_EXPLICIT_BZERO} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for explicit_bzero(3).
*/
extern void explicit_bzero(void *, size_t);
__HEREDOC__
[ ${HAVE_MEMMEM} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for memmem(3).
*/
void *memmem(const void *, size_t, const void *, size_t);
__HEREDOC__
[ ${HAVE_MEMRCHR} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for memrchr(3).
*/
void *memrchr(const void *b, int, size_t);
__HEREDOC__
[ ${HAVE_GETPROGNAME} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for getprogname(3).
*/
extern const char *getprogname(void);
__HEREDOC__
[ ${HAVE_READPASSPHRASE} -eq 0 ] && \
cat << __HEREDOC__
/*
* Macros and function required for readpassphrase(3).
*/
#define RPP_ECHO_OFF 0x00
#define RPP_ECHO_ON 0x01
#define RPP_REQUIRE_TTY 0x02
#define RPP_FORCELOWER 0x04
#define RPP_FORCEUPPER 0x08
#define RPP_SEVENBIT 0x10
#define RPP_STDIN 0x20
char *readpassphrase(const char *, char *, size_t, int);
__HEREDOC__
[ ${HAVE_REALLOCARRAY} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for reallocarray(3).
*/
extern void *reallocarray(void *, size_t, size_t);
__HEREDOC__
[ ${HAVE_RECALLOCARRAY} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for recallocarray(3).
*/
extern void *recallocarray(void *, size_t, size_t, size_t);
__HEREDOC__
[ ${HAVE_STRLCAT} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for strlcat(3).
*/
extern size_t strlcat(char *, const char *, size_t);
__HEREDOC__
[ ${HAVE_STRLCPY} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for strlcpy(3).
*/
extern size_t strlcpy(char *, const char *, size_t);
__HEREDOC__
[ ${HAVE_STRNDUP} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for strndup(3).
*/
extern char *strndup(const char *, size_t);
__HEREDOC__
[ ${HAVE_STRNLEN} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for strnlen(3).
*/
extern size_t strnlen(const char *, size_t);
__HEREDOC__
[ ${HAVE_STRTONUM} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for strotnum(3).
*/
extern long long strtonum(const char *, long long, long long, const char **);
__HEREDOC__
[ ${HAVE_MKFIFOAT} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for mkfifoat(2).
*/
int mkfifoat(int, const char *, mode_t);
__HEREDOC__
[ ${HAVE_MKNODAT} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for mknodat(2).
*/
int mknodat(int, const char *, mode_t, dev_t);
__HEREDOC__
[ ${HAVE_SETRESGID} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for setresgid(2).
*/
int setresgid(gid_t rgid, gid_t egid, gid_t sgid);
__HEREDOC__
[ ${HAVE_SETRESUID} -eq 0 ] && \
cat << __HEREDOC__
/*
* Compatibility for setresuid(2).
*/
int setresuid(uid_t ruid, uid_t euid, uid_t suid);
__HEREDOC__
if [ ${HAVE_SYS_QUEUE} -eq 0 ]; then
cat << __HEREDOC__
/*
* A compatible version of OpenBSD <sys/queue.h>.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ''AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
*/
/* OPENBSD ORIGINAL: sys/sys/queue.h */
/*
* Require for OS/X and other platforms that have old/broken/incomplete
* <sys/queue.h>.
*/
#undef LIST_EMPTY
#undef LIST_END
#undef LIST_ENTRY
#undef LIST_FIRST
#undef LIST_FOREACH
#undef LIST_FOREACH_SAFE
#undef LIST_HEAD
#undef LIST_HEAD_INITIALIZER
#undef LIST_INIT
#undef LIST_INSERT_AFTER
#undef LIST_INSERT_BEFORE
#undef LIST_INSERT_HEAD
#undef LIST_NEXT
#undef LIST_REMOVE
#undef LIST_REPLACE
#undef SIMPLEQ_CONCAT
#undef SIMPLEQ_EMPTY
#undef SIMPLEQ_END
#undef SIMPLEQ_ENTRY
#undef SIMPLEQ_FIRST
#undef SIMPLEQ_FOREACH
#undef SIMPLEQ_FOREACH_SAFE
#undef SIMPLEQ_HEAD
#undef SIMPLEQ_HEAD_INITIALIZER
#undef SIMPLEQ_INIT
#undef SIMPLEQ_INSERT_AFTER
#undef SIMPLEQ_INSERT_HEAD
#undef SIMPLEQ_INSERT_TAIL
#undef SIMPLEQ_NEXT
#undef SIMPLEQ_REMOVE_AFTER
#undef SIMPLEQ_REMOVE_HEAD
#undef SLIST_EMPTY
#undef SLIST_END
#undef SLIST_ENTRY
#undef SLIST_FIRST
#undef SLIST_FOREACH
#undef SLIST_FOREACH_SAFE
#undef SLIST_HEAD
#undef SLIST_HEAD_INITIALIZER
#undef SLIST_INIT
#undef SLIST_INSERT_AFTER
#undef SLIST_INSERT_HEAD
#undef SLIST_NEXT
#undef SLIST_REMOVE
#undef SLIST_REMOVE_AFTER
#undef SLIST_REMOVE_HEAD
#undef TAILQ_CONCAT
#undef TAILQ_EMPTY
#undef TAILQ_END
#undef TAILQ_ENTRY
#undef TAILQ_FIRST
#undef TAILQ_FOREACH
#undef TAILQ_FOREACH_REVERSE
#undef TAILQ_FOREACH_REVERSE_SAFE
#undef TAILQ_FOREACH_SAFE
#undef TAILQ_HEAD
#undef TAILQ_HEAD_INITIALIZER
#undef TAILQ_INIT
#undef TAILQ_INSERT_AFTER
#undef TAILQ_INSERT_BEFORE
#undef TAILQ_INSERT_HEAD
#undef TAILQ_INSERT_TAIL
#undef TAILQ_LAST
#undef TAILQ_NEXT
#undef TAILQ_PREV
#undef TAILQ_REMOVE
#undef TAILQ_REPLACE
#undef XSIMPLEQ_EMPTY
#undef XSIMPLEQ_END
#undef XSIMPLEQ_ENTRY
#undef XSIMPLEQ_FIRST
#undef XSIMPLEQ_FOREACH
#undef XSIMPLEQ_FOREACH_SAFE
#undef XSIMPLEQ_HEAD
#undef XSIMPLEQ_INIT
#undef XSIMPLEQ_INSERT_AFTER
#undef XSIMPLEQ_INSERT_HEAD
#undef XSIMPLEQ_INSERT_TAIL
#undef XSIMPLEQ_NEXT
#undef XSIMPLEQ_REMOVE_AFTER
#undef XSIMPLEQ_REMOVE_HEAD
#undef XSIMPLEQ_XOR
/*
* This file defines five types of data structures: singly-linked lists,
* lists, simple queues, tail queues and XOR simple queues.
*
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
* so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before
* or after an existing element or at the head of the list. A list
* may only be traversed in the forward direction.
*
* A simple queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are singly
* linked to save space, so elements can only be removed from the
* head of the list. New elements can be added to the list before or after
* an existing element, at the head of the list, or at the end of the
* list. A simple queue may only be traversed in the forward direction.
*
* A tail queue is headed by a pair of pointers, one to the head of the
* list and the other to the tail of the list. The elements are doubly
* linked so that an arbitrary element can be removed without a need to
* traverse the list. New elements can be added to the list before or
* after an existing element, at the head of the list, or at the end of
* the list. A tail queue may be traversed in either direction.
*
* An XOR simple queue is used in the same way as a regular simple queue.
* The difference is that the head structure also includes a "cookie" that
* is XOR'd with the queue pointer (first, last or next) to generate the
* real pointer value.
*
* For details on the use of these macros, see the queue(3) manual page.
*/
#if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
#define _Q_INVALID ((void *)-1)
#define _Q_INVALIDATE(a) (a) = _Q_INVALID
#else
#define _Q_INVALIDATE(a)
#endif
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \\
struct name { \\
struct type *slh_first; /* first element */ \\
}
#define SLIST_HEAD_INITIALIZER(head) \\
{ NULL }
#define SLIST_ENTRY(type) \\
struct { \\
struct type *sle_next; /* next element */ \\
}
/*
* Singly-linked List access methods.
*/
#define SLIST_FIRST(head) ((head)->slh_first)
#define SLIST_END(head) NULL
#define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
#define SLIST_FOREACH(var, head, field) \\
for((var) = SLIST_FIRST(head); \\
(var) != SLIST_END(head); \\
(var) = SLIST_NEXT(var, field))
#define SLIST_FOREACH_SAFE(var, head, field, tvar) \\
for ((var) = SLIST_FIRST(head); \\
(var) && ((tvar) = SLIST_NEXT(var, field), 1); \\
(var) = (tvar))
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) { \\
SLIST_FIRST(head) = SLIST_END(head); \\
}
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \\
(elm)->field.sle_next = (slistelm)->field.sle_next; \\
(slistelm)->field.sle_next = (elm); \\
} while (0)
#define SLIST_INSERT_HEAD(head, elm, field) do { \\
(elm)->field.sle_next = (head)->slh_first; \\
(head)->slh_first = (elm); \\
} while (0)
#define SLIST_REMOVE_AFTER(elm, field) do { \\
(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \\
} while (0)
#define SLIST_REMOVE_HEAD(head, field) do { \\
(head)->slh_first = (head)->slh_first->field.sle_next; \\
} while (0)
#define SLIST_REMOVE(head, elm, type, field) do { \\
if ((head)->slh_first == (elm)) { \\
SLIST_REMOVE_HEAD((head), field); \\
} else { \\
struct type *curelm = (head)->slh_first; \\
\\
while (curelm->field.sle_next != (elm)) \\
curelm = curelm->field.sle_next; \\
curelm->field.sle_next = \\
curelm->field.sle_next->field.sle_next; \\
} \\
_Q_INVALIDATE((elm)->field.sle_next); \\
} while (0)
/*
* List definitions.
*/
#define LIST_HEAD(name, type) \\
struct name { \\
struct type *lh_first; /* first element */ \\
}
#define LIST_HEAD_INITIALIZER(head) \\
{ NULL }
#define LIST_ENTRY(type) \\
struct { \\
struct type *le_next; /* next element */ \\
struct type **le_prev; /* address of previous next element */ \\
}
/*
* List access methods.
*/
#define LIST_FIRST(head) ((head)->lh_first)
#define LIST_END(head) NULL
#define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
#define LIST_FOREACH(var, head, field) \\
for((var) = LIST_FIRST(head); \\
(var)!= LIST_END(head); \\
(var) = LIST_NEXT(var, field))
#define LIST_FOREACH_SAFE(var, head, field, tvar) \\
for ((var) = LIST_FIRST(head); \\
(var) && ((tvar) = LIST_NEXT(var, field), 1); \\
(var) = (tvar))
/*
* List functions.
*/
#define LIST_INIT(head) do { \\
LIST_FIRST(head) = LIST_END(head); \\
} while (0)
#define LIST_INSERT_AFTER(listelm, elm, field) do { \\
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \\
(listelm)->field.le_next->field.le_prev = \\
&(elm)->field.le_next; \\
(listelm)->field.le_next = (elm); \\
(elm)->field.le_prev = &(listelm)->field.le_next; \\
} while (0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \\
(elm)->field.le_prev = (listelm)->field.le_prev; \\
(elm)->field.le_next = (listelm); \\
*(listelm)->field.le_prev = (elm); \\
(listelm)->field.le_prev = &(elm)->field.le_next; \\
} while (0)
#define LIST_INSERT_HEAD(head, elm, field) do { \\
if (((elm)->field.le_next = (head)->lh_first) != NULL) \\
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\\
(head)->lh_first = (elm); \\
(elm)->field.le_prev = &(head)->lh_first; \\
} while (0)
#define LIST_REMOVE(elm, field) do { \\
if ((elm)->field.le_next != NULL) \\
(elm)->field.le_next->field.le_prev = \\
(elm)->field.le_prev; \\
*(elm)->field.le_prev = (elm)->field.le_next; \\
_Q_INVALIDATE((elm)->field.le_prev); \\
_Q_INVALIDATE((elm)->field.le_next); \\
} while (0)
#define LIST_REPLACE(elm, elm2, field) do { \\
if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \\
(elm2)->field.le_next->field.le_prev = \\
&(elm2)->field.le_next; \\
(elm2)->field.le_prev = (elm)->field.le_prev; \\
*(elm2)->field.le_prev = (elm2); \\
_Q_INVALIDATE((elm)->field.le_prev); \\
_Q_INVALIDATE((elm)->field.le_next); \\
} while (0)
/*
* Simple queue definitions.
*/
#define SIMPLEQ_HEAD(name, type) \\
struct name { \\
struct type *sqh_first; /* first element */ \\
struct type **sqh_last; /* addr of last next element */ \\
}
#define SIMPLEQ_HEAD_INITIALIZER(head) \\
{ NULL, &(head).sqh_first }
#define SIMPLEQ_ENTRY(type) \\
struct { \\
struct type *sqe_next; /* next element */ \\
}
/*
* Simple queue access methods.
*/
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
#define SIMPLEQ_END(head) NULL
#define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
#define SIMPLEQ_FOREACH(var, head, field) \\
for((var) = SIMPLEQ_FIRST(head); \\
(var) != SIMPLEQ_END(head); \\
(var) = SIMPLEQ_NEXT(var, field))
#define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \\
for ((var) = SIMPLEQ_FIRST(head); \\
(var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \\
(var) = (tvar))
/*
* Simple queue functions.
*/
#define SIMPLEQ_INIT(head) do { \\
(head)->sqh_first = NULL; \\
(head)->sqh_last = &(head)->sqh_first; \\
} while (0)
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \\
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \\
(head)->sqh_last = &(elm)->field.sqe_next; \\
(head)->sqh_first = (elm); \\
} while (0)
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \\
(elm)->field.sqe_next = NULL; \\
*(head)->sqh_last = (elm); \\
(head)->sqh_last = &(elm)->field.sqe_next; \\
} while (0)
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \\
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\\
(head)->sqh_last = &(elm)->field.sqe_next; \\
(listelm)->field.sqe_next = (elm); \\
} while (0)
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \\
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \\
(head)->sqh_last = &(head)->sqh_first; \\
} while (0)
#define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \\
if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \\
== NULL) \\
(head)->sqh_last = &(elm)->field.sqe_next; \\
} while (0)
#define SIMPLEQ_CONCAT(head1, head2) do { \\
if (!SIMPLEQ_EMPTY((head2))) { \\
*(head1)->sqh_last = (head2)->sqh_first; \\
(head1)->sqh_last = (head2)->sqh_last; \\
SIMPLEQ_INIT((head2)); \\
} \\
} while (0)
/*
* XOR Simple queue definitions.
*/
#define XSIMPLEQ_HEAD(name, type) \\
struct name { \\
struct type *sqx_first; /* first element */ \\
struct type **sqx_last; /* addr of last next element */ \\
unsigned long sqx_cookie; \\
}
#define XSIMPLEQ_ENTRY(type) \\
struct { \\
struct type *sqx_next; /* next element */ \\
}
/*
* XOR Simple queue access methods.
*/
#define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \\
(unsigned long)(ptr)))
#define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first))
#define XSIMPLEQ_END(head) NULL
#define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head))
#define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next))
#define XSIMPLEQ_FOREACH(var, head, field) \\
for ((var) = XSIMPLEQ_FIRST(head); \\
(var) != XSIMPLEQ_END(head); \\
(var) = XSIMPLEQ_NEXT(head, var, field))
#define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \\
for ((var) = XSIMPLEQ_FIRST(head); \\
(var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \\
(var) = (tvar))
/*
* XOR Simple queue functions.
*/
#define XSIMPLEQ_INIT(head) do { \\
arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \\
(head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \\
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \\
} while (0)
#define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \\
if (((elm)->field.sqx_next = (head)->sqx_first) == \\
XSIMPLEQ_XOR(head, NULL)) \\
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \\
(head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \\
} while (0)
#define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \\
(elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \\
*(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \\
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \\
} while (0)
#define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \\
if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \\
XSIMPLEQ_XOR(head, NULL)) \\
(head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \\
(listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \\
} while (0)
#define XSIMPLEQ_REMOVE_HEAD(head, field) do { \\
if (((head)->sqx_first = XSIMPLEQ_XOR(head, \\
(head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \\
(head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \\
} while (0)
#define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \\
if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \\
(elm)->field.sqx_next)->field.sqx_next) \\
== XSIMPLEQ_XOR(head, NULL)) \\
(head)->sqx_last = \\
XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \\
} while (0)
/*
* Tail queue definitions.
*/
#define TAILQ_HEAD(name, type) \\
struct name { \\
struct type *tqh_first; /* first element */ \\
struct type **tqh_last; /* addr of last next element */ \\
}
#define TAILQ_HEAD_INITIALIZER(head) \\
{ NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type) \\
struct { \\
struct type *tqe_next; /* next element */ \\
struct type **tqe_prev; /* address of previous next element */ \\
}
/*
* Tail queue access methods.
*/
#define TAILQ_FIRST(head) ((head)->tqh_first)
#define TAILQ_END(head) NULL
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname) \\
(*(((struct headname *)((head)->tqh_last))->tqh_last))
/* XXX */
#define TAILQ_PREV(elm, headname, field) \\
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
#define TAILQ_EMPTY(head) \\
(TAILQ_FIRST(head) == TAILQ_END(head))
#define TAILQ_FOREACH(var, head, field) \\
for((var) = TAILQ_FIRST(head); \\
(var) != TAILQ_END(head); \\
(var) = TAILQ_NEXT(var, field))
#define TAILQ_FOREACH_SAFE(var, head, field, tvar) \\
for ((var) = TAILQ_FIRST(head); \\
(var) != TAILQ_END(head) && \\
((tvar) = TAILQ_NEXT(var, field), 1); \\
(var) = (tvar))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \\
for((var) = TAILQ_LAST(head, headname); \\
(var) != TAILQ_END(head); \\
(var) = TAILQ_PREV(var, headname, field))
#define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \\
for ((var) = TAILQ_LAST(head, headname); \\
(var) != TAILQ_END(head) && \\
((tvar) = TAILQ_PREV(var, headname, field), 1); \\
(var) = (tvar))
/*
* Tail queue functions.
*/
#define TAILQ_INIT(head) do { \\
(head)->tqh_first = NULL; \\
(head)->tqh_last = &(head)->tqh_first; \\
} while (0)
#define TAILQ_INSERT_HEAD(head, elm, field) do { \\
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \\
(head)->tqh_first->field.tqe_prev = \\
&(elm)->field.tqe_next; \\
else \\
(head)->tqh_last = &(elm)->field.tqe_next; \\
(head)->tqh_first = (elm); \\
(elm)->field.tqe_prev = &(head)->tqh_first; \\
} while (0)
#define TAILQ_INSERT_TAIL(head, elm, field) do { \\
(elm)->field.tqe_next = NULL; \\
(elm)->field.tqe_prev = (head)->tqh_last; \\
*(head)->tqh_last = (elm); \\
(head)->tqh_last = &(elm)->field.tqe_next; \\
} while (0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \\
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\\
(elm)->field.tqe_next->field.tqe_prev = \\
&(elm)->field.tqe_next; \\
else \\
(head)->tqh_last = &(elm)->field.tqe_next; \\
(listelm)->field.tqe_next = (elm); \\
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \\
} while (0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \\
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \\
(elm)->field.tqe_next = (listelm); \\
*(listelm)->field.tqe_prev = (elm); \\
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \\
} while (0)
#define TAILQ_REMOVE(head, elm, field) do { \\
if (((elm)->field.tqe_next) != NULL) \\
(elm)->field.tqe_next->field.tqe_prev = \\
(elm)->field.tqe_prev; \\
else \\
(head)->tqh_last = (elm)->field.tqe_prev; \\
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \\
_Q_INVALIDATE((elm)->field.tqe_prev); \\
_Q_INVALIDATE((elm)->field.tqe_next); \\
} while (0)
#define TAILQ_REPLACE(head, elm, elm2, field) do { \\
if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \\
(elm2)->field.tqe_next->field.tqe_prev = \\
&(elm2)->field.tqe_next; \\
else \\
(head)->tqh_last = &(elm2)->field.tqe_next; \\
(elm2)->field.tqe_prev = (elm)->field.tqe_prev; \\
*(elm2)->field.tqe_prev = (elm2); \\
_Q_INVALIDATE((elm)->field.tqe_prev); \\
_Q_INVALIDATE((elm)->field.tqe_next); \\
} while (0)
#define TAILQ_CONCAT(head1, head2, field) do { \\
if (!TAILQ_EMPTY(head2)) { \\
*(head1)->tqh_last = (head2)->tqh_first; \\
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \\
(head1)->tqh_last = (head2)->tqh_last; \\
TAILQ_INIT((head2)); \\
} \\
} while (0)
__HEREDOC__
fi
if [ ${HAVE_SYS_TREE} -eq 0 ]; then
cat << __HEREDOC__
/*
* A compatible version of OpenBSD <sys/tree.h>.
*/
/*
* Copyright 2002 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* OPENBSD ORIGINAL: sys/sys/tree.h */
/*
* This file defines data structures for different types of trees:
* splay trees and red-black trees.
*
* A splay tree is a self-organizing data structure. Every operation
* on the tree causes a splay to happen. The splay moves the requested
* node to the root of the tree and partly rebalances it.
*
* This has the benefit that request locality causes faster lookups as
* the requested nodes move to the top of the tree. On the other hand,
* every lookup causes memory writes.
*
* The Balance Theorem bounds the total access time for m operations
* and n inserts on an initially empty tree as O((m + n)lg n). The
* amortized cost for a sequence of m accesses to a splay tree is O(lg n);
*
* A red-black tree is a binary search tree with the node color as an
* extra attribute. It fulfills a set of conditions:
* - every search path from the root to a leaf consists of the
* same number of black nodes,
* - each red node (except for the root) has a black parent,
* - each leaf node is black.
*
* Every operation on a red-black tree is bounded as O(lg n).
* The maximum height of a red-black tree is 2lg (n+1).
*/
#define SPLAY_HEAD(name, type) \\
struct name { \\
struct type *sph_root; /* root of the tree */ \\
}
#define SPLAY_INITIALIZER(root) \\
{ NULL }
#define SPLAY_INIT(root) do { \\
(root)->sph_root = NULL; \\
} while (0)
#define SPLAY_ENTRY(type) \\
struct { \\
struct type *spe_left; /* left element */ \\
struct type *spe_right; /* right element */ \\
}
#define SPLAY_LEFT(elm, field) (elm)->field.spe_left
#define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
#define SPLAY_ROOT(head) (head)->sph_root
#define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
/* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
#define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \\
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \\
(head)->sph_root = tmp; \\
} while (0)
#define SPLAY_ROTATE_LEFT(head, tmp, field) do { \\
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \\
SPLAY_LEFT(tmp, field) = (head)->sph_root; \\
(head)->sph_root = tmp; \\
} while (0)
#define SPLAY_LINKLEFT(head, tmp, field) do { \\
SPLAY_LEFT(tmp, field) = (head)->sph_root; \\
tmp = (head)->sph_root; \\
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \\
} while (0)
#define SPLAY_LINKRIGHT(head, tmp, field) do { \\
SPLAY_RIGHT(tmp, field) = (head)->sph_root; \\
tmp = (head)->sph_root; \\
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \\
} while (0)
#define SPLAY_ASSEMBLE(head, node, left, right, field) do { \\
SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \\
SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\\
SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \\
SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \\
} while (0)
/* Generates prototypes and inline functions */
#define SPLAY_PROTOTYPE(name, type, field, cmp) \\
void name##_SPLAY(struct name *, struct type *); \\
void name##_SPLAY_MINMAX(struct name *, int); \\
struct type *name##_SPLAY_INSERT(struct name *, struct type *); \\
struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \\
\\
/* Finds the node with the same key as elm */ \\
static __inline struct type * \\
name##_SPLAY_FIND(struct name *head, struct type *elm) \\
{ \\
if (SPLAY_EMPTY(head)) \\
return(NULL); \\
name##_SPLAY(head, elm); \\
if ((cmp)(elm, (head)->sph_root) == 0) \\
return (head->sph_root); \\
return (NULL); \\
} \\
\\
static __inline struct type * \\
name##_SPLAY_NEXT(struct name *head, struct type *elm) \\
{ \\
name##_SPLAY(head, elm); \\
if (SPLAY_RIGHT(elm, field) != NULL) { \\
elm = SPLAY_RIGHT(elm, field); \\
while (SPLAY_LEFT(elm, field) != NULL) { \\
elm = SPLAY_LEFT(elm, field); \\
} \\
} else \\
elm = NULL; \\
return (elm); \\
} \\
\\
static __inline struct type * \\
name##_SPLAY_MIN_MAX(struct name *head, int val) \\
{ \\
name##_SPLAY_MINMAX(head, val); \\
return (SPLAY_ROOT(head)); \\
}
/* Main splay operation.
* Moves node close to the key of elm to top
*/
#define SPLAY_GENERATE(name, type, field, cmp) \\
struct type * \\
name##_SPLAY_INSERT(struct name *head, struct type *elm) \\
{ \\
if (SPLAY_EMPTY(head)) { \\
SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \\
} else { \\
int __comp; \\
name##_SPLAY(head, elm); \\
__comp = (cmp)(elm, (head)->sph_root); \\
if(__comp < 0) { \\
SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\\
SPLAY_RIGHT(elm, field) = (head)->sph_root; \\
SPLAY_LEFT((head)->sph_root, field) = NULL; \\
} else if (__comp > 0) { \\
SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\\
SPLAY_LEFT(elm, field) = (head)->sph_root; \\
SPLAY_RIGHT((head)->sph_root, field) = NULL; \\
} else \\
return ((head)->sph_root); \\
} \\
(head)->sph_root = (elm); \\
return (NULL); \\
} \\
\\
struct type * \\
name##_SPLAY_REMOVE(struct name *head, struct type *elm) \\
{ \\
struct type *__tmp; \\
if (SPLAY_EMPTY(head)) \\
return (NULL); \\
name##_SPLAY(head, elm); \\
if ((cmp)(elm, (head)->sph_root) == 0) { \\
if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \\
(head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\\
} else { \\
__tmp = SPLAY_RIGHT((head)->sph_root, field); \\
(head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\\
name##_SPLAY(head, elm); \\
SPLAY_RIGHT((head)->sph_root, field) = __tmp; \\
} \\
return (elm); \\
} \\
return (NULL); \\
} \\
\\
void \\
name##_SPLAY(struct name *head, struct type *elm) \\
{ \\
struct type __node, *__left, *__right, *__tmp; \\
int __comp; \\
\\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\\
__left = __right = &__node; \\
\\
while ((__comp = (cmp)(elm, (head)->sph_root))) { \\
if (__comp < 0) { \\
__tmp = SPLAY_LEFT((head)->sph_root, field); \\
if (__tmp == NULL) \\
break; \\
if ((cmp)(elm, __tmp) < 0){ \\
SPLAY_ROTATE_RIGHT(head, __tmp, field); \\
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\\
break; \\
} \\
SPLAY_LINKLEFT(head, __right, field); \\
} else if (__comp > 0) { \\
__tmp = SPLAY_RIGHT((head)->sph_root, field); \\
if (__tmp == NULL) \\
break; \\
if ((cmp)(elm, __tmp) > 0){ \\
SPLAY_ROTATE_LEFT(head, __tmp, field); \\
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\\
break; \\
} \\
SPLAY_LINKRIGHT(head, __left, field); \\
} \\
} \\
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \\
} \\
\\
/* Splay with either the minimum or the maximum element \\
* Used to find minimum or maximum element in tree. \\
*/ \\
void name##_SPLAY_MINMAX(struct name *head, int __comp) \\
{ \\
struct type __node, *__left, *__right, *__tmp; \\
\\
SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\\
__left = __right = &__node; \\
\\
while (1) { \\
if (__comp < 0) { \\
__tmp = SPLAY_LEFT((head)->sph_root, field); \\
if (__tmp == NULL) \\
break; \\
if (__comp < 0){ \\
SPLAY_ROTATE_RIGHT(head, __tmp, field); \\
if (SPLAY_LEFT((head)->sph_root, field) == NULL)\\
break; \\
} \\
SPLAY_LINKLEFT(head, __right, field); \\
} else if (__comp > 0) { \\
__tmp = SPLAY_RIGHT((head)->sph_root, field); \\
if (__tmp == NULL) \\
break; \\
if (__comp > 0) { \\
SPLAY_ROTATE_LEFT(head, __tmp, field); \\
if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\\
break; \\
} \\
SPLAY_LINKRIGHT(head, __left, field); \\
} \\
} \\
SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \\
}
#define SPLAY_NEGINF -1
#define SPLAY_INF 1
#define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
#define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
#define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
#define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
#define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \\
: name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
#define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \\
: name##_SPLAY_MIN_MAX(x, SPLAY_INF))
#define SPLAY_FOREACH(x, name, head) \\
for ((x) = SPLAY_MIN(name, head); \\
(x) != NULL; \\
(x) = SPLAY_NEXT(name, head, x))
/* Macros that define a red-black tree */
#define RB_HEAD(name, type) \\
struct name { \\
struct type *rbh_root; /* root of the tree */ \\
}
#define RB_INITIALIZER(root) \\
{ NULL }
#define RB_INIT(root) do { \\
(root)->rbh_root = NULL; \\
} while (0)
#define RB_BLACK 0
#define RB_RED 1
#define RB_ENTRY(type) \\
struct { \\
struct type *rbe_left; /* left element */ \\
struct type *rbe_right; /* right element */ \\
struct type *rbe_parent; /* parent element */ \\
int rbe_color; /* node color */ \\
}
#define RB_LEFT(elm, field) (elm)->field.rbe_left
#define RB_RIGHT(elm, field) (elm)->field.rbe_right
#define RB_PARENT(elm, field) (elm)->field.rbe_parent
#define RB_COLOR(elm, field) (elm)->field.rbe_color
#define RB_ROOT(head) (head)->rbh_root
#define RB_EMPTY(head) (RB_ROOT(head) == NULL)
#define RB_SET(elm, parent, field) do { \\
RB_PARENT(elm, field) = parent; \\
RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \\
RB_COLOR(elm, field) = RB_RED; \\
} while (0)
#define RB_SET_BLACKRED(black, red, field) do { \\
RB_COLOR(black, field) = RB_BLACK; \\
RB_COLOR(red, field) = RB_RED; \\
} while (0)
#ifndef RB_AUGMENT
#define RB_AUGMENT(x) do {} while (0)
#endif
#define RB_ROTATE_LEFT(head, elm, tmp, field) do { \\
(tmp) = RB_RIGHT(elm, field); \\
if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \\
RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \\
} \\
RB_AUGMENT(elm); \\
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \\
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \\
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \\
else \\
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \\
} else \\
(head)->rbh_root = (tmp); \\
RB_LEFT(tmp, field) = (elm); \\
RB_PARENT(elm, field) = (tmp); \\
RB_AUGMENT(tmp); \\
if ((RB_PARENT(tmp, field))) \\
RB_AUGMENT(RB_PARENT(tmp, field)); \\
} while (0)
#define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \\
(tmp) = RB_LEFT(elm, field); \\
if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \\
RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \\
} \\
RB_AUGMENT(elm); \\
if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \\
if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \\
RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \\
else \\
RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \\
} else \\
(head)->rbh_root = (tmp); \\
RB_RIGHT(tmp, field) = (elm); \\
RB_PARENT(elm, field) = (tmp); \\
RB_AUGMENT(tmp); \\
if ((RB_PARENT(tmp, field))) \\
RB_AUGMENT(RB_PARENT(tmp, field)); \\
} while (0)
/* Generates prototypes and inline functions */
#define RB_PROTOTYPE(name, type, field, cmp) \\
RB_PROTOTYPE_INTERNAL(name, type, field, cmp,)
#define RB_PROTOTYPE_STATIC(name, type, field, cmp) \\
RB_PROTOTYPE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
#define RB_PROTOTYPE_INTERNAL(name, type, field, cmp, attr) \\
attr void name##_RB_INSERT_COLOR(struct name *, struct type *); \\
attr void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\\
attr struct type *name##_RB_REMOVE(struct name *, struct type *); \\
attr struct type *name##_RB_INSERT(struct name *, struct type *); \\
attr struct type *name##_RB_FIND(struct name *, struct type *); \\
attr struct type *name##_RB_NFIND(struct name *, struct type *); \\
attr struct type *name##_RB_NEXT(struct type *); \\
attr struct type *name##_RB_PREV(struct type *); \\
attr struct type *name##_RB_MINMAX(struct name *, int); \\
\\
/* Main rb operation.
* Moves node close to the key of elm to top
*/
#define RB_GENERATE(name, type, field, cmp) \\
RB_GENERATE_INTERNAL(name, type, field, cmp,)
#define RB_GENERATE_STATIC(name, type, field, cmp) \\
RB_GENERATE_INTERNAL(name, type, field, cmp, __attribute__((__unused__)) static)
#define RB_GENERATE_INTERNAL(name, type, field, cmp, attr) \\
attr void \\
name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \\
{ \\
struct type *parent, *gparent, *tmp; \\
while ((parent = RB_PARENT(elm, field)) && \\
RB_COLOR(parent, field) == RB_RED) { \\
gparent = RB_PARENT(parent, field); \\
if (parent == RB_LEFT(gparent, field)) { \\
tmp = RB_RIGHT(gparent, field); \\
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \\
RB_COLOR(tmp, field) = RB_BLACK; \\
RB_SET_BLACKRED(parent, gparent, field);\\
elm = gparent; \\
continue; \\
} \\
if (RB_RIGHT(parent, field) == elm) { \\
RB_ROTATE_LEFT(head, parent, tmp, field);\\
tmp = parent; \\
parent = elm; \\
elm = tmp; \\
} \\
RB_SET_BLACKRED(parent, gparent, field); \\
RB_ROTATE_RIGHT(head, gparent, tmp, field); \\
} else { \\
tmp = RB_LEFT(gparent, field); \\
if (tmp && RB_COLOR(tmp, field) == RB_RED) { \\
RB_COLOR(tmp, field) = RB_BLACK; \\
RB_SET_BLACKRED(parent, gparent, field);\\
elm = gparent; \\
continue; \\
} \\
if (RB_LEFT(parent, field) == elm) { \\
RB_ROTATE_RIGHT(head, parent, tmp, field);\\
tmp = parent; \\
parent = elm; \\
elm = tmp; \\
} \\
RB_SET_BLACKRED(parent, gparent, field); \\
RB_ROTATE_LEFT(head, gparent, tmp, field); \\
} \\
} \\
RB_COLOR(head->rbh_root, field) = RB_BLACK; \\
} \\
\\
attr void \\
name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \\
{ \\
struct type *tmp; \\
while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \\
elm != RB_ROOT(head)) { \\
if (RB_LEFT(parent, field) == elm) { \\
tmp = RB_RIGHT(parent, field); \\
if (RB_COLOR(tmp, field) == RB_RED) { \\
RB_SET_BLACKRED(tmp, parent, field); \\
RB_ROTATE_LEFT(head, parent, tmp, field);\\
tmp = RB_RIGHT(parent, field); \\
} \\
if ((RB_LEFT(tmp, field) == NULL || \\
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\\
(RB_RIGHT(tmp, field) == NULL || \\
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\\
RB_COLOR(tmp, field) = RB_RED; \\
elm = parent; \\
parent = RB_PARENT(elm, field); \\
} else { \\
if (RB_RIGHT(tmp, field) == NULL || \\
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\\
struct type *oleft; \\
if ((oleft = RB_LEFT(tmp, field)))\\
RB_COLOR(oleft, field) = RB_BLACK;\\
RB_COLOR(tmp, field) = RB_RED; \\
RB_ROTATE_RIGHT(head, tmp, oleft, field);\\
tmp = RB_RIGHT(parent, field); \\
} \\
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\\
RB_COLOR(parent, field) = RB_BLACK; \\
if (RB_RIGHT(tmp, field)) \\
RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\\
RB_ROTATE_LEFT(head, parent, tmp, field);\\
elm = RB_ROOT(head); \\
break; \\
} \\
} else { \\
tmp = RB_LEFT(parent, field); \\
if (RB_COLOR(tmp, field) == RB_RED) { \\
RB_SET_BLACKRED(tmp, parent, field); \\
RB_ROTATE_RIGHT(head, parent, tmp, field);\\
tmp = RB_LEFT(parent, field); \\
} \\
if ((RB_LEFT(tmp, field) == NULL || \\
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\\
(RB_RIGHT(tmp, field) == NULL || \\
RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\\
RB_COLOR(tmp, field) = RB_RED; \\
elm = parent; \\
parent = RB_PARENT(elm, field); \\
} else { \\
if (RB_LEFT(tmp, field) == NULL || \\
RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\\
struct type *oright; \\
if ((oright = RB_RIGHT(tmp, field)))\\
RB_COLOR(oright, field) = RB_BLACK;\\
RB_COLOR(tmp, field) = RB_RED; \\
RB_ROTATE_LEFT(head, tmp, oright, field);\\
tmp = RB_LEFT(parent, field); \\
} \\
RB_COLOR(tmp, field) = RB_COLOR(parent, field);\\
RB_COLOR(parent, field) = RB_BLACK; \\
if (RB_LEFT(tmp, field)) \\
RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\\
RB_ROTATE_RIGHT(head, parent, tmp, field);\\
elm = RB_ROOT(head); \\
break; \\
} \\
} \\
} \\
if (elm) \\
RB_COLOR(elm, field) = RB_BLACK; \\
} \\
\\
attr struct type * \\
name##_RB_REMOVE(struct name *head, struct type *elm) \\
{ \\
struct type *child, *parent, *old = elm; \\
int color; \\
if (RB_LEFT(elm, field) == NULL) \\
child = RB_RIGHT(elm, field); \\
else if (RB_RIGHT(elm, field) == NULL) \\
child = RB_LEFT(elm, field); \\
else { \\
struct type *left; \\
elm = RB_RIGHT(elm, field); \\
while ((left = RB_LEFT(elm, field))) \\
elm = left; \\
child = RB_RIGHT(elm, field); \\
parent = RB_PARENT(elm, field); \\
color = RB_COLOR(elm, field); \\
if (child) \\
RB_PARENT(child, field) = parent; \\
if (parent) { \\
if (RB_LEFT(parent, field) == elm) \\
RB_LEFT(parent, field) = child; \\
else \\
RB_RIGHT(parent, field) = child; \\
RB_AUGMENT(parent); \\
} else \\
RB_ROOT(head) = child; \\
if (RB_PARENT(elm, field) == old) \\
parent = elm; \\
(elm)->field = (old)->field; \\
if (RB_PARENT(old, field)) { \\
if (RB_LEFT(RB_PARENT(old, field), field) == old)\\
RB_LEFT(RB_PARENT(old, field), field) = elm;\\
else \\
RB_RIGHT(RB_PARENT(old, field), field) = elm;\\
RB_AUGMENT(RB_PARENT(old, field)); \\
} else \\
RB_ROOT(head) = elm; \\
RB_PARENT(RB_LEFT(old, field), field) = elm; \\
if (RB_RIGHT(old, field)) \\
RB_PARENT(RB_RIGHT(old, field), field) = elm; \\
if (parent) { \\
left = parent; \\
do { \\
RB_AUGMENT(left); \\
} while ((left = RB_PARENT(left, field))); \\
} \\
goto color; \\
} \\
parent = RB_PARENT(elm, field); \\
color = RB_COLOR(elm, field); \\
if (child) \\
RB_PARENT(child, field) = parent; \\
if (parent) { \\
if (RB_LEFT(parent, field) == elm) \\
RB_LEFT(parent, field) = child; \\
else \\
RB_RIGHT(parent, field) = child; \\
RB_AUGMENT(parent); \\
} else \\
RB_ROOT(head) = child; \\
color: \\
if (color == RB_BLACK) \\
name##_RB_REMOVE_COLOR(head, parent, child); \\
return (old); \\
} \\
\\
/* Inserts a node into the RB tree */ \\
attr struct type * \\
name##_RB_INSERT(struct name *head, struct type *elm) \\
{ \\
struct type *tmp; \\
struct type *parent = NULL; \\
int comp = 0; \\
tmp = RB_ROOT(head); \\
while (tmp) { \\
parent = tmp; \\
comp = (cmp)(elm, parent); \\
if (comp < 0) \\
tmp = RB_LEFT(tmp, field); \\
else if (comp > 0) \\
tmp = RB_RIGHT(tmp, field); \\
else \\
return (tmp); \\
} \\
RB_SET(elm, parent, field); \\
if (parent != NULL) { \\
if (comp < 0) \\
RB_LEFT(parent, field) = elm; \\
else \\
RB_RIGHT(parent, field) = elm; \\
RB_AUGMENT(parent); \\
} else \\
RB_ROOT(head) = elm; \\
name##_RB_INSERT_COLOR(head, elm); \\
return (NULL); \\
} \\
\\
/* Finds the node with the same key as elm */ \\
attr struct type * \\
name##_RB_FIND(struct name *head, struct type *elm) \\
{ \\
struct type *tmp = RB_ROOT(head); \\
int comp; \\
while (tmp) { \\
comp = cmp(elm, tmp); \\
if (comp < 0) \\
tmp = RB_LEFT(tmp, field); \\
else if (comp > 0) \\
tmp = RB_RIGHT(tmp, field); \\
else \\
return (tmp); \\
} \\
return (NULL); \\
} \\
\\
/* Finds the first node greater than or equal to the search key */ \\
attr struct type * \\
name##_RB_NFIND(struct name *head, struct type *elm) \\
{ \\
struct type *tmp = RB_ROOT(head); \\
struct type *res = NULL; \\
int comp; \\
while (tmp) { \\
comp = cmp(elm, tmp); \\
if (comp < 0) { \\
res = tmp; \\
tmp = RB_LEFT(tmp, field); \\
} \\
else if (comp > 0) \\
tmp = RB_RIGHT(tmp, field); \\
else \\
return (tmp); \\
} \\
return (res); \\
} \\
\\
/* ARGSUSED */ \\
attr struct type * \\
name##_RB_NEXT(struct type *elm) \\
{ \\
if (RB_RIGHT(elm, field)) { \\
elm = RB_RIGHT(elm, field); \\
while (RB_LEFT(elm, field)) \\
elm = RB_LEFT(elm, field); \\
} else { \\
if (RB_PARENT(elm, field) && \\
(elm == RB_LEFT(RB_PARENT(elm, field), field))) \\
elm = RB_PARENT(elm, field); \\
else { \\
while (RB_PARENT(elm, field) && \\
(elm == RB_RIGHT(RB_PARENT(elm, field), field)))\\
elm = RB_PARENT(elm, field); \\
elm = RB_PARENT(elm, field); \\
} \\
} \\
return (elm); \\
} \\
\\
/* ARGSUSED */ \\
attr struct type * \\
name##_RB_PREV(struct type *elm) \\
{ \\
if (RB_LEFT(elm, field)) { \\
elm = RB_LEFT(elm, field); \\
while (RB_RIGHT(elm, field)) \\
elm = RB_RIGHT(elm, field); \\
} else { \\
if (RB_PARENT(elm, field) && \\
(elm == RB_RIGHT(RB_PARENT(elm, field), field))) \\
elm = RB_PARENT(elm, field); \\
else { \\
while (RB_PARENT(elm, field) && \\
(elm == RB_LEFT(RB_PARENT(elm, field), field)))\\
elm = RB_PARENT(elm, field); \\
elm = RB_PARENT(elm, field); \\
} \\
} \\
return (elm); \\
} \\
\\
attr struct type * \\
name##_RB_MINMAX(struct name *head, int val) \\
{ \\
struct type *tmp = RB_ROOT(head); \\
struct type *parent = NULL; \\
while (tmp) { \\
parent = tmp; \\
if (val < 0) \\
tmp = RB_LEFT(tmp, field); \\
else \\
tmp = RB_RIGHT(tmp, field); \\
} \\
return (parent); \\
}
#define RB_NEGINF -1
#define RB_INF 1
#define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
#define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
#define RB_FIND(name, x, y) name##_RB_FIND(x, y)
#define RB_NFIND(name, x, y) name##_RB_NFIND(x, y)
#define RB_NEXT(name, x, y) name##_RB_NEXT(y)
#define RB_PREV(name, x, y) name##_RB_PREV(y)
#define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
#define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
#define RB_FOREACH(x, name, head) \\
for ((x) = RB_MIN(name, head); \\
(x) != NULL; \\
(x) = name##_RB_NEXT(x))
#define RB_FOREACH_SAFE(x, name, head, y) \\
for ((x) = RB_MIN(name, head); \\
((x) != NULL) && ((y) = name##_RB_NEXT(x), 1); \\
(x) = (y))
#define RB_FOREACH_REVERSE(x, name, head) \\
for ((x) = RB_MAX(name, head); \\
(x) != NULL; \\
(x) = name##_RB_PREV(x))
#define RB_FOREACH_REVERSE_SAFE(x, name, head, y) \\
for ((x) = RB_MAX(name, head); \\
((x) != NULL) && ((y) = name##_RB_PREV(x), 1); \\
(x) = (y))
__HEREDOC__
fi
cat << __HEREDOC__
#endif /*!OCONFIGURE_CONFIG_H*/
__HEREDOC__
if [ ${HAVE_FTS} -eq 0 ]; then
cat << __HEREDOC__
/*
* Compatibility for fts(3) functions.
*/
typedef struct {
struct _ftsent *fts_cur; /* current node */
struct _ftsent *fts_child; /* linked list of children */
struct _ftsent **fts_array; /* sort array */
dev_t fts_dev; /* starting device # */
char *fts_path; /* path for this descent */
int fts_rfd; /* fd for root */
size_t fts_pathlen; /* sizeof(path) */
int fts_nitems; /* elements in the sort array */
int (*fts_compar)(const struct _ftsent **, const struct _ftsent **); /* compare function */
#define FTS_COMFOLLOW 0x0001 /* follow command line symlinks */
#define FTS_LOGICAL 0x0002 /* logical walk */
#define FTS_NOCHDIR 0x0004 /* don't change directories */
#define FTS_NOSTAT 0x0008 /* don't get stat info */
#define FTS_PHYSICAL 0x0010 /* physical walk */
#define FTS_SEEDOT 0x0020 /* return dot and dot-dot */
#define FTS_XDEV 0x0040 /* don't cross devices */
#define FTS_OPTIONMASK 0x00ff /* valid user option mask */
#define FTS_NAMEONLY 0x1000 /* (private) child names only */
#define FTS_STOP 0x2000 /* (private) unrecoverable error */
int fts_options; /* fts_open options, global flags */
} FTS;
typedef struct _ftsent {
struct _ftsent *fts_cycle; /* cycle node */
struct _ftsent *fts_parent; /* parent directory */
struct _ftsent *fts_link; /* next file in directory */
long fts_number; /* local numeric value */
void *fts_pointer; /* local address value */
char *fts_accpath; /* access path */
char *fts_path; /* root path */
int fts_errno; /* errno for this node */
int fts_symfd; /* fd for symlink */
size_t fts_pathlen; /* strlen(fts_path) */
size_t fts_namelen; /* strlen(fts_name) */
ino_t fts_ino; /* inode */
dev_t fts_dev; /* device */
nlink_t fts_nlink; /* link count */
#define FTS_ROOTPARENTLEVEL -1
#define FTS_ROOTLEVEL 0
#define FTS_MAXLEVEL 0x7fffffff
int fts_level; /* depth (-1 to N) */
#define FTS_D 1 /* preorder directory */
#define FTS_DC 2 /* directory that causes cycles */
#define FTS_DEFAULT 3 /* none of the above */
#define FTS_DNR 4 /* unreadable directory */
#define FTS_DOT 5 /* dot or dot-dot */
#define FTS_DP 6 /* postorder directory */
#define FTS_ERR 7 /* error; errno is set */
#define FTS_F 8 /* regular file */
#define FTS_INIT 9 /* initialized only */
#define FTS_NS 10 /* stat(2) failed */
#define FTS_NSOK 11 /* no stat(2) requested */
#define FTS_SL 12 /* symbolic link */
#define FTS_SLNONE 13 /* symbolic link without target */
unsigned short fts_info; /* user flags for FTSENT structure */
#define FTS_DONTCHDIR 0x01 /* don't chdir .. to the parent */
#define FTS_SYMFOLLOW 0x02 /* followed a symlink to get here */
unsigned short fts_flags; /* private flags for FTSENT structure */
#define FTS_AGAIN 1 /* read node again */
#define FTS_FOLLOW 2 /* follow symbolic link */
#define FTS_NOINSTR 3 /* no instructions */
#define FTS_SKIP 4 /* discard node */
unsigned short fts_instr; /* fts_set() instructions */
unsigned short fts_spare; /* unused */
struct stat *fts_statp; /* stat(2) information */
char fts_name[1]; /* file name */
} FTSENT;
FTSENT *fts_children(FTS *, int);
int fts_close(FTS *);
FTS *fts_open(char * const *, int,
int (*)(const FTSENT **, const FTSENT **));
FTSENT *fts_read(FTS *);
int fts_set(FTS *, FTSENT *, int);
__HEREDOC__
fi
echo "config.h: written" 1>&2
echo "config.h: written" 1>&3
#----------------------------------------------------------------------
# Now we go to generate our Makefile.configure.
# This file is simply a bunch of Makefile variables.
# They'll work in both GNUmakefile and BSDmakefile.
# You MIGHT want to change this.
#----------------------------------------------------------------------
exec > Makefile.configure
[ -z "${BINDIR}" ] && BINDIR="${PREFIX}/bin"
[ -z "${SBINDIR}" ] && SBINDIR="${PREFIX}/sbin"
[ -z "${INCLUDEDIR}" ] && INCLUDEDIR="${PREFIX}/include"
[ -z "${LIBDIR}" ] && LIBDIR="${PREFIX}/lib"
[ -z "${MANDIR}" ] && MANDIR="${PREFIX}/man"
[ -z "${SHAREDIR}" ] && SHAREDIR="${PREFIX}/share"
[ -z "${INSTALL_PROGRAM}" ] && INSTALL_PROGRAM="${INSTALL} -m 0555"
[ -z "${INSTALL_LIB}" ] && INSTALL_LIB="${INSTALL} -m 0444"
[ -z "${INSTALL_MAN}" ] && INSTALL_MAN="${INSTALL} -m 0444"
[ -z "${INSTALL_DATA}" ] && INSTALL_DATA="${INSTALL} -m 0444"
cat << __HEREDOC__
CC = ${CC}
CFLAGS = ${CFLAGS}
CPPFLAGS = ${CPPFLAGS}
LDADD = ${LDADD}
LDADD_B64_NTOP = ${LDADD_B64_NTOP}
LDADD_CRYPT = ${LDADD_CRYPT}
LDADD_LIB_SOCKET = ${LDADD_LIB_SOCKET}
LDADD_MD5 = ${LDADD_MD5}
LDADD_SHA2 = ${LDADD_SHA2}
LDADD_STATIC = ${LDADD_STATIC}
LDFLAGS = ${LDFLAGS}
STATIC = ${STATIC}
PREFIX = ${PREFIX}
BINDIR = ${BINDIR}
SHAREDIR = ${SHAREDIR}
SBINDIR = ${SBINDIR}
INCLUDEDIR = ${INCLUDEDIR}
LIBDIR = ${LIBDIR}
MANDIR = ${MANDIR}
INSTALL = ${INSTALL}
INSTALL_PROGRAM = ${INSTALL_PROGRAM}
INSTALL_LIB = ${INSTALL_LIB}
INSTALL_MAN = ${INSTALL_MAN}
INSTALL_DATA = ${INSTALL_DATA}
__HEREDOC__
echo "Makefile.configure: written" 1>&2
echo "Makefile.configure: written" 1>&3
exit 0