Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions examples/mxnet/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
FROM horovod/horovod:0.16.2-tf1.12.0-torch1.1.0-mxnet1.4.1-py3.5 AS build
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You don't need the AS build part.


# Create a wrapper for OpenMPI to allow running as root by default
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These lines seem to have been removed in horovod's Dockerfile in favor of horovodrun. Have you tried to use it?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I haven't tried horovodrun. Should this example be using horovodrun?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I guess it's up to you. We can certainly do it at a later time.

RUN mv /usr/local/bin/mpirun /usr/local/bin/mpirun.real && \
echo '#!/bin/bash' > /usr/local/bin/mpirun && \
echo 'mpirun.real --allow-run-as-root "$@"' >> /usr/local/bin/mpirun && \
chmod a+x /usr/local/bin/mpirun

# Configure OpenMPI to run good defaults:
RUN echo "hwloc_base_binding_policy = none" >> /usr/local/etc/openmpi-mca-params.conf && \
echo "rmaps_base_mapping_policy = slot" >> /usr/local/etc/openmpi-mca-params.conf && \
echo "btl_tcp_if_exclude = lo,docker0" >> /usr/local/etc/openmpi-mca-params.conf

# Set default NCCL parameters
RUN echo NCCL_DEBUG=INFO >> /etc/nccl.conf && \
echo NCCL_SOCKET_IFNAME=^docker0 >> /etc/nccl.conf

# --------------------------------------------------------------------

# Other packages needed for running examples
RUN pip install gluoncv

# add the example script to examples folder
ADD mxnet_mnist.py /examples/mxnet_mnist.py

WORKDIR "/"
CMD ["bin/bash"]
50 changes: 50 additions & 0 deletions examples/mxnet/mxnet-mnist.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
apiVersion: kubeflow.org/v1alpha1
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you add this example for v1alpha2 version?

kind: MPIJob
metadata:
labels:
ksonnet.io/component: mxnet-mnist-horovod-job
name: mxnet-mnist-horovod-job
namespace: default
spec:
replicas: 2
template:
spec:
containers:
- command:
- mpirun
- -mca
- btl_tcp_if_exclude
- lo
- -mca
- pml
- ob1
- -mca
- btl
- ^openib
- --bind-to
- none
- -map-by
- slot
- -x
- LD_LIBRARY_PATH
- -x
- PATH
- -x
- NCCL_SOCKET_IFNAME=eth0
- -x
- NCCL_DEBUG=INFO
- -x
- MXNET_CUDNN_AUTOTUNE_DEFAULT=0
- python
- /examples/mxnet_mnist.py
- --save-frequency
- "1"
- --batch-size
- "64"
- --epochs
- "5"
image: mpioperator/mxnet-horovod:latest
name: mxnet-mnist-horovod-job
resources:
limits:
nvidia.com/gpu: 4
171 changes: 171 additions & 0 deletions examples/mxnet/mxnet_mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
import argparse
import logging
import os
import zipfile
import time

import mxnet as mx
import horovod.mxnet as hvd
from mxnet import autograd, gluon, nd
from mxnet.test_utils import download

# Training settings
parser = argparse.ArgumentParser(description='Apache MXNet MNIST Example')

parser.add_argument('--batch-size', type=int, default=64,
help='training batch size (default: 64)')
parser.add_argument('--dtype', type=str, default='float32',
help='training data type (default: float32)')
parser.add_argument('--epochs', type=int, default=5,
help='number of training epochs (default: 5)')
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disable training on GPU (default: False)')
args = parser.parse_args()

if not args.no_cuda:
# Disable CUDA if there are no GPUs.
if mx.context.num_gpus() == 0:
args.no_cuda = True

logging.basicConfig(level=logging.INFO)
logging.info(args)


# Function to get mnist iterator given a rank
def get_mnist_iterator(rank):
data_dir = "data-%d" % rank
if not os.path.isdir(data_dir):
os.makedirs(data_dir)
zip_file_path = download('http://data.mxnet.io/mxnet/data/mnist.zip',
dirname=data_dir)
with zipfile.ZipFile(zip_file_path) as zf:
zf.extractall(data_dir)

input_shape = (1, 28, 28)
batch_size = args.batch_size

train_iter = mx.io.MNISTIter(
image="%s/train-images-idx3-ubyte" % data_dir,
label="%s/train-labels-idx1-ubyte" % data_dir,
input_shape=input_shape,
batch_size=batch_size,
shuffle=True,
flat=False,
num_parts=hvd.size(),
part_index=hvd.rank()
)

val_iter = mx.io.MNISTIter(
image="%s/t10k-images-idx3-ubyte" % data_dir,
label="%s/t10k-labels-idx1-ubyte" % data_dir,
input_shape=input_shape,
batch_size=batch_size,
flat=False,
)

return train_iter, val_iter


# Function to define neural network
def conv_nets():
net = gluon.nn.HybridSequential()
with net.name_scope():
net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Flatten())
net.add(gluon.nn.Dense(512, activation="relu"))
net.add(gluon.nn.Dense(10))
return net


# Function to evaluate accuracy for a model
def evaluate(model, data_iter, context):
data_iter.reset()
metric = mx.metric.Accuracy()
for _, batch in enumerate(data_iter):
data = batch.data[0].as_in_context(context)
label = batch.label[0].as_in_context(context)
output = model(data.astype(args.dtype, copy=False))
metric.update([label], [output])
return metric.get()


# Initialize Horovod
hvd.init()

# Horovod: pin context to local rank
context = mx.cpu(hvd.local_rank()) if args.no_cuda else mx.gpu(hvd.local_rank())
num_workers = hvd.size()

# Load training and validation data
train_data, val_data = get_mnist_iterator(hvd.rank())

# Build model
model = conv_nets()
model.cast(args.dtype)
model.hybridize()

# Create optimizer
optimizer_params = {'momentum': args.momentum,
'learning_rate': args.lr * hvd.size()}
opt = mx.optimizer.create('sgd', **optimizer_params)

# Initialize parameters
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in",
magnitude=2)
model.initialize(initializer, ctx=context)

# Horovod: fetch and broadcast parameters
params = model.collect_params()
if params is not None:
hvd.broadcast_parameters(params, root_rank=0)

# Horovod: create DistributedTrainer, a subclass of gluon.Trainer
trainer = hvd.DistributedTrainer(params, opt)

# Create loss function and train metric
loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
metric = mx.metric.Accuracy()

# Train model
for epoch in range(args.epochs):
tic = time.time()
train_data.reset()
metric.reset()
for nbatch, batch in enumerate(train_data, start=1):
data = batch.data[0].as_in_context(context)
label = batch.label[0].as_in_context(context)
with autograd.record():
output = model(data.astype(args.dtype, copy=False))
loss = loss_fn(output, label)
loss.backward()
trainer.step(args.batch_size)
metric.update([label], [output])

if nbatch % 100 == 0:
name, acc = metric.get()
logging.info('[Epoch %d Batch %d] Training: %s=%f' %
(epoch, nbatch, name, acc))

if hvd.rank() == 0:
elapsed = time.time() - tic
speed = nbatch * args.batch_size * hvd.size() / elapsed
logging.info('Epoch[%d]\tSpeed=%.2f samples/s\tTime cost=%f',
epoch, speed, elapsed)

# Evaluate model accuracy
_, train_acc = metric.get()
name, val_acc = evaluate(model, val_data, context)
if hvd.rank() == 0:
logging.info('Epoch[%d]\tTrain: %s=%f\tValidation: %s=%f', epoch, name,
train_acc, name, val_acc)

if hvd.rank() == 0 and epoch == args.epochs - 1:
assert val_acc > 0.96, "Achieved accuracy (%f) is lower than expected\
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Avoid using '\'

(0.96)" % val_acc