RWTH Aachen University, The University of Sydney
- 2024-03-25: Data and Evaluation Code Release
- 2024-02-26: STU Accepted at CVPR 2025
- STU dataset is available at STU.
- PANOPTIC-CUDAL dataset is available at Panoptic-CUDAL.
To verify that downloaded files are correct, you can verify the SHA256 hash of the files.
sha256sum -c file_sha256sum.chk
Overall the data follows the SemanticKITTI format.
|── 125/
| ├── poses.txt
| ├── calib.txt
| ├── labels/
| │ ├ 000000.label
| │ └ 000001.label
| .
| |
| └── velodyne/
| ├ 000000.bin
| └ 000001.bin
.
.
└── 134/
Predictions are simple .txt
files with confidence per point.
Simple evaluation for point-level anomaly segmentation:
python compute_point_level_ood.py --data-dir stu_dataset/val --pred-dir ./prediction
Simple evaluation for point-level anomaly segmentation:
python compute_object_level_ood.py --data-dir stu_dataset/val --instance-dir ./instance_prediction
- Release images
- Release training code and checkpoints
- Release code for points projection to images
- Release the data
- Release evaluation code
@inproceedings{nekrasov2025stu,
title = {{Spotting the Unexpected (STU): A 3D LiDAR Dataset for Anomaly Segmentation in Autonomous Driving}},
author = {Nekrasov, Alexey and Burdorf, Malcolm and Worrall, Stewart and Leibe, Bastian and Julie Stephany Berrio Perez},
booktitle = {{"Conference on Computer Vision and Pattern Recognition (CVPR)"}},
year = {2025}
}
MIT!