 Cannot retrieve contributors at this time
 \documentclass{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \title{PRODES ILP} \author{Guilherme Kunigami} \date{September 2019} \begin{document} \maketitle \section{Introduction} This document describes an integer linear programming for the Protein Design model PRODES. \section{Model} \textbf{Constants.} Let $P$ as the set of positions. Let $R_p$ be the set of rotamers available at position $p \in P$. Let $R$ be the set of all rotamers (i.e. $R = \bigcup_{p in P} R_p$). The coefficient $e_{i,j}$ indicates the cost between rotamer $i$ and $j$. \\ \\ \textbf{Variables.} Let $r_{i} \in \{0, 1\}$. $r_{i} = 1$ if we pick rotamer $i \in R$. Let $x_{i,j} \in \{0, 1\}$, $x_{i,j} = 1$ if both rotamer $i$ and $j$ are picked, for all $i \in R_p, j \in R_q$, where $p, q \in P$ and $p < q$. \\ \paragraph{Objective function} $$\min \sum_{i} \sum_{j, j < i}x_{i,j} e_{i,j}$$ \paragraph{Constraints} \begin{align} \sum_{i \in R_p} r_{i} & = 1 \quad \forall p \in R \\ r_{i} & = \sum_{j \in R_q} x_{i, j} \quad \forall i \in R_p, \mbox{such that } p, q \in P, p < q \\ r_{j} & = \sum_{i \in R_p} x_{i, j} \quad \forall j \in R_q, \mbox{such that } p, q \in P, p < q \end{align} Equation (1) says we should pick exactly one rotamer for each position. Constraints (2) and (3) enforces that $x_{i, j} = 1$ if and only if $r_i = r_j = 1$. \end{document}