The goal of ccesMRPviz is to visualize and diagnose common tasks in MRP and survey analysis. It was formerly a part of the ccesMRPrun package.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ccesMRPrun)
library(ccesMRPviz)
# MRP sims setup
mrp_df <- summ_sims(poststrat_draws(fit_GA, poststrat_tgt = acs_GA)) %>%
left_join(elec_GA)
#> Joining, by = "cd"
mrp_df
#> # A tibble: 14 × 9
#> cd p_mrp_est p_mrp_se p_mrp_050 p_mrp_100 p_mrp_900 p_mrp_950 clinton_vote
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 GA-01 0.435 0.0398 0.379 0.390 0.488 0.510 0.409
#> 2 GA-02 0.505 0.0361 0.449 0.462 0.552 0.567 0.55
#> 3 GA-03 0.345 0.0327 0.290 0.304 0.386 0.398 0.328
#> 4 GA-04 0.675 0.0320 0.624 0.635 0.717 0.730 0.753
#> 5 GA-05 0.728 0.0327 0.673 0.685 0.769 0.780 0.85
#> 6 GA-06 0.506 0.0373 0.452 0.463 0.556 0.574 0.468
#> 7 GA-07 0.447 0.0318 0.396 0.408 0.488 0.502 0.448
#> 8 GA-08 0.333 0.0365 0.268 0.284 0.376 0.386 0.344
#> 9 GA-09 0.248 0.0291 0.200 0.211 0.284 0.295 0.193
#> 10 GA-10 0.376 0.0332 0.326 0.336 0.418 0.434 0.358
#> 11 GA-11 0.392 0.0313 0.343 0.354 0.433 0.446 0.353
#> 12 GA-12 0.382 0.0366 0.318 0.333 0.424 0.439 0.407
#> 13 GA-13 0.603 0.0410 0.530 0.549 0.652 0.663 0.71
#> 14 GA-14 0.247 0.0343 0.188 0.202 0.290 0.301 0.221
#> # … with 1 more variable: clinton_vote_2pty <dbl>
Currently, the only function is scatter_45
, which is a wrapper around
ggplot which enforces a visualization of a simple scatterplot that I
argue is important for
finding patterns in survey estimates relative to ground truth. These
graphs:
- Enforce a 1:1 aspect ratio
- Uses the same range for both axes
which makes the plot into a square.
In addition, this wrapper easily enables:
- Computation and listing of summary stats (RMSE, Correlation, Mean Deviance)
- Facetting scatterplots using
facet_wrap
- Adding confidence intervals
- Coloring and labeling points.
scatter_45(mrp_df,
clinton_vote,
p_mrp_est,
lblvar = cd,
lbvar = p_mrp_050,
ubvar = p_mrp_950,
xlab = "Clinton Vote",
ylab = "MRP Estimate")