
Xcode Cloud
Continuous integration & delivery

Xcode Cloud
This is a CI/CD built into Xcode and designed specifically for Apple developers. It combines Xcode, TestFlight

and App Store Connect.

• Automatically test apps on Apple devices in Simulator. 
 
• Automatically submitting an app to TestFlight. 
 
• Automatically send the app for review before publishing
to the App Store. 
 
• Access to Apple's cloud infrastructure. 
 
• Potential bug notifications.

This feature is available starting with Xcode 13, and is currently in beta testing.

Developer account requirements: 
• You must be registered with the Apple Developer
Program. 
• An Apple ID must be added to Xcode. 
• The app must have been created in App Store Connect
or you must have permission to create it.

Project and workspace requirements: 
• The project must contain an Xcode project or workspace
file. 
• A shared schema must be used. 
• Archiving action for the schema must be enabled. 
• A new build system must be used. 
• Dependencies and libraries must be available for Xcode
cloud. 
• Automatic code signing must be used.

Requirements
To work with Xcode Cloud you need to meet some requirements.

Version control system requirements: 
Xcode Cloud requires the code to be in a Git repository. In addition, you will need a specific permission or role to
connect Xcode Cloud to your repository. It supports the following source control providers: 
• Bitbucket Cloud and Bitbucket Server – requires the administrator role to connect. 
• GitHub and GitHub Enterprise – requires the organization owner or administrator role (if the organization is not used). 
• GitLab and self-managed GitLab – maintainer role required.

Connection

Xcode Report navigation Cloud Select Product

First Workflow

First workflow
When setting up Xcode Cloud, the first workflow includes:

Build for each change or pull request associated with the
default branch.

Using the latest version of macOS and Xcode for a
temporary environment.

Using the archiving action.

Sending an email with information about the build upon
completion.

You can edit this workflow if you need.

Setting up a repository
Xcode Cloud requires access to a Git repository with the project. It uses this access to automatically create and

test code when changes are made. You will need to go through the authorisation process on your SCM provider's
website.

Workflow
Workflow is the configuration of the steps you want to perform in Xcode Cloud.

Workflow includes the following settings:

You can add new workflows or edit, duplicate, delete and suspend existing ones from Xcode
or App Store Connect.

General

Environment

Start Condition

Actions

Post Actions

Custom build scripts

Workflow/General

Workflow/Environment

Workflow/Start Condition
Determine when Xcode Cloud starts a workflow.

Branch Changes 
Any, a specific, or several specific
branches have been changed. 

 
Pull Request Changes 
A PR has been created or changed.

Tag Changes 
A Git tag was created or changed. 

 
 
On a Schedule for a Branch 
A pre-set time has elapsed.

For all conditions except "On a Schedule" you can select "Monitor or
Ignore Specific Files and Folders", which can help you ignore, or
alternatively, pay attention to changes if they affect: 
• Any file in a specific folder. 
• A specific file in any or a specific folder. 
• A file with a specified extension in any folder or specific folder.

Workflow/Actions
These are the actions that will be performed when conditions are

called from Start Condition.

You can choose from the following available actions:

When Xcode Cloud runs an actions it:

Build TestAnalyse Archive

Workflow/Actions/Build
When Xcode Cloud performs the build action, it accesses the
source code and runs the xcodebuild build command to create
the build product.

Once complete, Xcode Cloud makes the following
artefacts available:

• build product, 
• build logs, 
• result bundle.

Workflow/Actions/Analyse
Analysis can help look for memory leaks or other problems. This
step is quite time-consuming, so it is not recommended to run it
regularly.

When Xcode Cloud performs the analysis action, it
accesses your source code and runs the xcodebuild
analyze command.

Workflow/Actions/Test
The test action is performed in two separate steps:

1. xcodebuild build-for-testing command 
 
In the first step, Xcode Cloud accesses the source code
and runs the xcodebuild build-for-testing command.

2. xcodebuild test-without-building 
 
In the second step, Xcode Cloud uses the build created in
the first step to run your tests with the xcodebuild test-
without-building command.

Workflow/Actions/Archive
When Xcode Cloud performs the archive action, it accesses your
code and runs the xcodebuild archive command.

• None  
Use this option if you are not setting up a workflow to distribute
the application.

• TestFlight (Internal Testing Only) 
The exported application archive is suitable for distribution to
internal testers and developers using TestFlight.

• TestFlight and App Store 
The exported application archive is suitable for distribution to
external testers using TestFlight and for release to the App Store.

When archiving, you will need to select the destination of your
archive. Possible options:

Workflow/Post-actions
Actions that take place after building.

Setting up custom notifications 
Xcode Cloud can send notifications to email or Slack when a build
succeeds or fails. 
 
Publish to TestFlight 
Xcode Cloud can distribute a new version of the application in
TestFlight for both internal and external testers.

Custom build scripts
These are your custom shell scripts with which you can extend the

functionality of Xcode Cloud.

Xcode Cloud recognises three different types of scripts:

post-clone script pre-xcodebuild script post-xcodebuild script

! Important 
• You cannot gain administrator rights using sudo.  
• Files you create with scripts are not available to other scripts – Xcode Cloud deletes all files created by scripts.

1.

Custom build scripts
To create the scripts you need:

Script folder Shell Script Choose a script type

Add the script Commit the script

Create a folder called ci_scripts in
the project root.

Create Shell Script using Xcode
template without adding it to the
target. 

Name the script depending
on its type: 
- ci_post_clone.sh,  
- ci_pre_xcodebuild.sh,  
- ci_post_xcodebuild.sh.

Make the script executable

From the terminal go to the
ci_scripts folder, and make the
script executable by running the
command: 
chmod +x ci_post_clone.sh (or
another script name)

Add the script to the file, including
#!/bin/sh first line.

Commit the script in the repository.

2. 3.

4. 5. 6.

Custom build scripts

Add resources to the CI scripts

Custom build scripts run in a temporary build
environment where the source code may not be available.
Therefore, all resources accessed by the scripts must be
placed in the ci_scripts directory. 
 
If you need to edit a specific file associated with your
source code, you can create a symbolic link to the file in
the ci_scripts directory.

The script files should always be directly in the
ci_scripts folder.!

Access environment variables

Environment variables make the script as flexible as
possible. You can use your own custom environment
variables, for example, you can put an API key in there
which will be used by the script to send logs to the
server. Also, Xcode Cloud sends already prepared
environment variables.

The list of prepared variables can be seen at: 
https://developer.apple.com/documentation/xcode/
environment-variable-reference

https://developer.apple.com/documentation/xcode/environment-variable-reference
https://developer.apple.com/documentation/xcode/environment-variable-reference

Custom build scripts
Debug information

The logs from your script appear in the build report's
build logs, which can be useful for debugging. But it's
worth remembering that confidential information
shouldn't be logged unless it's a secret custom
environment variable. In the case of secret custom
environment variables Xcode Cloud replaces it with
(**********) in the build logs.

Write resilient scripts

Custom build scripts can perform important tasks. You
can write a script that returns a nonzero exit code if the
script fails. This is how you tell Xcode Cloud that
something has gone wrong and allow it to complete the
build to let you know there is a problem.

Dependencies
Swift Packages + Xcode Cloud

Xcode Cloud supports public packages managed by Git out of
the box. However, if the package is private, access to the private
repository must be granted by Xcode Cloud. 
 
In order for Xcode Cloud to allow SPM dependencies your
Package.resolved file must be committed.

You cannot connect Xcode Cloud to more than one
account or instance of the same SCM provider.!

CocoaPods / Carthage + Xcode Cloud

The temporary environment does not include any third-party tools
other than Homebrew. You can use it to install CocoaPods or
Carthage.

To use Cocoapods, your Podfile and Podfile.lock must be committed.

Ignore Changes
Xcode Cloud knows how to ignore certain changes in Git. To avoid triggering a workflow related to branch

changes, when writing a commit comment, write [ci skip] at the end.

Build Number

You may therefore have a problem when developing
applications for the Mac. You need to set up the build
number so that it is constantly incrementing. App Store
Connect is used to solve this situation.

Xcode Cloud assigns a number to each build, starting with 1,
and automatically increments it.

For this you need the Admin or App Manager role.!

To set up the next build number: 
• Go to your app page on the App Store Connect. 
• Click the Xcode Cloud tab and select Settings. 
• Click the Build Number tab under Settings. 
• Click the Edit button next to Next Build Number. 
• Enter the new build number and save your changes.

Configuring webhooks in Xcode Cloud
You can connect up to five custom services that can somehow react to Xcode Cloud events.

Xcode Cloud sends an HTTP request to a given endpoint every time it creates, starts and completes a
build. In turn, the service must send an HTTP status code in response. If it returns a server error that

can be repeated or Xcode Cloud does not receive a response within 30 seconds, it resends the
request until it receives a successful response.

What the JSON request from Xcode Cloud looks like can be seen at: 
https://developer.apple.com/documentation/xcode/configuring-webhooks-in-xcode-cloud

https://developer.apple.com/documentation/xcode/configuring-webhooks-in-xcode-cloud

Configuring webhooks
in Xcode Cloud
To create a webhook in Xcode Cloud you need:

1.
App Store Connect

Go to Xcode Cloud in App Store
Connect.

Settings > Webhook

In the sidebar, select Settings >
Webhooks > Add button.2.

Unique name

Enter a unique name for your
webhook. 3.

Service URL

Enter the URL of a service that
can receive and handle HTTPS
requests from Xcode Cloud.4.

Deleting data from Xcode Cloud: 
In Xcode Navigator, go to Report, right-click on your app,
and select Delete Xcode Cloud Data. After that, go to App
Store Connect to the app you want, select Settings and
click Delete Xcode Cloud Data. 
 
These apps will no longer be available immediately and
will be removed from the Apple system within 30 days.

Disconnect Xcode Cloud from Slack: 
Open Slack workspace in the Slack app and select Settings
& administration > Manage apps. Select "Apps" in the
sidebar, then select the Xcode Cloud app. Click "Remove
App".

Disconnecting the project from Xcode
Cloud

Disconnecting Xcode Cloud from the repository: 
• To disable Bitbucket Server, GitHub Enterprise, or self-managed GitLab: 
Go to App Store Connect under Users and Access, select Xcode Cloud tab, hover over the SCM provider, click Remove. 
• To disable Bitbucket, GitHub, or GitLab: Go to App Store Connect under Users and Access, select Xcode Cloud tab,
select Integrations in the sidebar, click Unlink next to the SCM provider. 
 
You then need to disable the Personal Access Tokens or Apps that allowed Xcode Cloud access to the repository.
Disabling depends on the SCM provider. For more detailed instructions: 
https://developer.apple.com/documentation/xcode/removing-your-project-from-xcode-cloud

https://developer.apple.com/documentation/xcode/removing-your-project-from-xcode-cloud

Pricing

25 hours/month

$14.99/month

Free through December 2023

100 hours/month

$49.99/month

250 hours/month

$99.99/month

1000 hours/month

$399.99/month

Thanks for your attention

