
CoastSat.slope:	Narrabeen-Collaroy	example
This	is	an	extention	of	the	main	CoastSat	toolbox	and	it	is	assumed	that	the	user	is	familiar	with	CoastSat	as	the	outputs	of	CoastSat	are
used	here	to	estimate	beach	slopes.	The	 coastsat 	environment	also	needs	to	be	installed	before	attempting	this	example.

This	example	shows	how	to	estimate	the	beach	slope	along	5	transects	at	Narrabeen-Collaroy,	Sydney,	Australia.

Initial	settings

1.	Load	satellite-derived	shorelines	and	transect	locations

Satellite-derived	shorelines	from	Landsat	5,	7	and	8	between	1999	and	2020	are	needed	to	estimate	the	beach	slope,	these	have	to
be	mapped	with	CoastSat	beforehand.	When	mapping	shorelines	with	CoastSat,	the	coordinates	of	the	2D	shorelines	are	saved	in	a	file
named	 sitename_output.pkl .

In	this	example	we	use	2	files	that	are	under	example_data/	(you	will	need	the	same	files	for	another	site):

NARRA_output.pkl :	satellite-derived	shorelines	mapped	from	1999-2020	using	Landsat	5,7	and	8	(no	Sentinel-2)

NARRA_transects.geojson :	cross-shore	transect	coordinates	(2	points,	the	first	one	being	landwards)

When	preparing	your	own	files,	make	sure	that	both	files	are	in	the	same	coordinate	system	(in	this	example	epsg:28356).

The	section	below	loads	the	two	files,	removes	duplicates	and	shorelines	with	poor	georeferencing	and	plots	the	2D	shorelines	and	cross-
shore	transects.

5	transects	have	been	loaded
0	duplicates
8	bad	georef

#	initial	settings
%load_ext	autoreload
%autoreload	2
import	os
import	warnings
warnings.filterwarnings("ignore")
import	numpy	as	np
import	matplotlib.pyplot	as	plt
from	datetime	import	datetime,	timedelta
import	pytz
import	pickle
#	beach	slope	estmation	module
import	SDS_slope

#	load	the	sitename_output.pkl	generated	by	CoastSat
sitename	=	'Odisha	1	history'

with	open(os.path.join(r'C:\Users\z5030440\OneDrive	-	UNSW\fes-2.9.1-Source\data\fes2014',	sitename	+	'_output'	+
				output	=	pickle.load(f)	
				
#	load	the	2D	transects	from	geojson	file
geojson_file	=	os.path.join(os.getcwd(),	r'C:\Users\z5030440\OneDrive	-	UNSW\fes-2.9.1-Source\data\fes2014',	sitename
transects	=	SDS_slope.transects_from_geojson(geojson_file)

#	remove	S2	shorelines	(the	slope	estimation	algorithm	needs	only	Landsat	shorelines)
if	'S2'	in	output['satname']:
				idx_S2	=	np.array([_	==	'S2'	for	_	in	output['satname']])
				for	key	in	output.keys():
								output[key]	=	[output[key][_]	for	_	in	np.where(~idx_S2)[0]]

#	remove	duplicates	(can	happen	that	images	overlap	and	there	are	2	shorelines	for	the	same	date)
output	=	SDS_slope.remove_duplicates(output)
#	remove	shorelines	from	images	with	poor	georeferencing	(RMSE	>	10	m)
output	=	SDS_slope.remove_inaccurate_georef(output,	10)

#	plot	shorelines	and	transects
fig,ax	=	plt.subplots(1,1,figsize=[12,		8])
fig.set_tight_layout(True)
ax.axis('equal')
ax.set(xlabel='Eastings',	ylabel='Northings',	title=sitename)
ax.grid(linestyle=':',	color='0.5')
for	i	in	range(len(output['shorelines'])):
				coords	=	output['shorelines'][i]
				date	=	output['dates'][i]
				ax.plot(coords[:,0],	coords[:,1],	'.',	label=date.strftime('%d-%m-%Y'))
for	key	in	transects.keys():
				ax.plot(transects[key][:,0],transects[key][:,1],'k--',lw=2)
				ax.text(transects[key][-1,0],	transects[key][-1,1],	key)

https://github.com/kvos/CoastSat

2.	Extract	time-series	of	shoreline	change	along	the	transects

To	obtain	time-series	of	shoreline	change	we	need	to	calculate	the	intersections	between	the	2D	shorelines	and	the	cross-shore	transects,
this	can	be	done	in	the	CoastSat	toolbox	but	I	provided	here	a	more	advanced	method	that	deals	with	outliers	and	erroneous	detections.	As
the	accuracy	of	the	beach	slope	estimate	will	depend	on	the	quality	of	the	satellite-derived	shorelines,	it	is	important	to	get	rid	of	large	outliers
as	these	will	affect	the	slope	estimates.

To	remove	outliers	use	the	 max_cross_change 	parameter	to	define	the	maximum	cross-shore	distance	for	despiking	the	time-series.
Narrabeen-Collaroy	is	microtidal	and	storm-dominated,	therefore	the	threshold	was	set	at	40	m.

1		-	outliers	removed	1
2		-	outliers	removed	0
3		-	outliers	removed	1
4		-	outliers	removed	3
5		-	outliers	removed	1

#	a	more	robust	method	to	compute	intersections	is	provided	here	to	avoid	the	presence	of	outliers	in	the	time-series

settings_transects	=	{#	parameters	for	shoreline	intersections
																						'along_dist':									25,									#	along-shore	distance	to	use	for	intersection
																						'max_std':												15,									#	max	std	for	points	around	transect
																						'max_range':										30,									#	max	range	for	points	around	transect
																						'min_val':												-100,							#	largest	negative	value	along	transect	(landwards	of	transect	origin)
																						#	parameters	for	outlier	removal
																						'nan/max':												'auto',					#	mode	for	removing	outliers	('auto',	'nan',	'max')
																						'prc_std':												0.1,								#	percentage	to	use	in	'auto'	mode	to	switch	from	'nan'	to	'max'
																						'max_cross_change':			40,									#	maximum	cross-shore	distance	for	despiking.
																						}
#	compute	intersections	[advanced	version]
cross_distance	=	SDS_slope.compute_intersection(output,	transects,	settings_transects)	
#	remove	outliers	[advanced	version]
cross_distance	=	SDS_slope.reject_outliers(cross_distance,output,settings_transects)								
#	plot	time-series
SDS_slope.plot_cross_distance(output['dates'],cross_distance)

3.	Get	tide	levels	at	the	time	of	image	acquisition

Now	that	we	have	the	time-series	of	shoreline	change,	we	need	to	obtain	the	tide	level	at	the	time	of	image	acquisition	for	each	data	point.
There	are	two	options	to	get	the	tide	levels:

Option	1:	Use	a	global	tide	model	(FES2014	from	AVISO)	to	get	the	modeled	tide	levels	at	the	time	of	image	acquisition
Option	2:	Provide	your	own	file	with	measured/modeled	tide	levels

There	are	also	some	parameters	to	estimate	the	beach	slope.	You	can	change	the	trial	beach	slopes	if	the	range	does	not	correspond	to	the
beach	slope	at	your	site	by	changing	 slope_min and	 slope_max .	Do	not	change	any	of	the	other	parameters.

In	the	section	below	the	time-series	of	shoreline	change	are	cropped	between	1999	and	2000	as	this	is	the	period	when	2	Landsat	satellites
are	concurrently	in	orbit	(providing	a	minimum	sampling	period	of	8	days).

#	slope	estimation	settings
days_in_year	=	365.2425
seconds_in_day	=	24*3600
settings_slope	=	{'slope_min':								0.035,																		#	minimum	slope	to	trial!
																		'slope_max':								1.0,																				#	maximum	slope	to	trial!

https://www.aviso.altimetry.fr/es/data/products/auxiliary-products/global-tide-fes/description-fes2014.html

Stored	'sitename'	(str)
Stored	'output'	(dict)
Stored	'geojson_file'	(str)
Stored	'transects'	(dict)
Stored	'coords'	(ndarray)
Stored	'date'	(datetime)
Stored	'cross_distance'	(dict)
Stored	'settings_transects'	(dict)
Stored	'days_in_year'	(float)
Stored	'seconds_in_day'	(int)
Stored	'settings_slope'	(dict)
Stored	'beach_slopes'	(ndarray)
Stored	'idx_dates'	(list)
Stored	'dates_sat'	(list)

Option	1:	get	tide	levels	from	FES2014

You	will	need	to	install	FES2014	following	the	instructions	provided	here.	Information	about	this	global	tide	model	can	be	found	on	AVISO's
website.

In	the	section	below	the	tide	level	corresponding	to	each	date	in	 dates_sat 	is	computed	from	the	model	in	a	numpy.array	named	
tide_sat .

																		'delta_slope':						0.005,																		#	slope	increment
																		'date_range':							[1999,2020],												#	range	of	dates	over	which	to	perform	the	analysis
																		'n_days':											8,																						#	sampling	period	[days]
																		'n0':															50,																					#	parameter	for	Nyquist	criterium	in	Lomb-Scargle	transforms
																		'freqs_cutoff':					1./(seconds_in_day*30),	#	1	month	frequency
																		'delta_f':										100*1e-10,														#	deltaf	for	identifying	peak	tidal	frequency	band
																		'prc_conf':									0.05,																			#	percentage	above	minimum	to	define	confidence	bands	in	energy	curve
																		}
settings_slope['date_range']	=	[pytz.utc.localize(datetime(settings_slope['date_range'][0],5,1)),
																																pytz.utc.localize(datetime(settings_slope['date_range'][1],1,1))]
beach_slopes	=	SDS_slope.range_slopes(settings_slope['slope_min'],	settings_slope['slope_max'],	settings_slope['delta_slope'

#	clip	the	dates	between	1999	and	2020	as	we	need	the	Landsat	satellites	
idx_dates	=	[np.logical_and(_>settings_slope['date_range'][0],_<settings_slope['date_range'][1])	for	_	in	output[
dates_sat	=	[output['dates'][_]	for	_	in	np.where(idx_dates)[0]]
for	key	in	cross_distance.keys():
				cross_distance[key]	=	cross_distance[key][idx_dates]

#	Storing	all	the	variables	I've	got	so	far.	
#	At	this	juncture,	I	should:
		#	1)	store	variables	to	retrieve	later
		#	2)	interrupt	Jupyter	notebook,	switch	environments	to	pyfes	envt,	open	the	other	notebook	and	restore	variables
%store	sitename
%store	output	
%store	geojson_file	
%store	transects	
#	%store	fig	
#	%store	ax	
%store	coords	
%store	date	
%store	cross_distance	
%store	settings_transects	
%store	days_in_year	
%store	seconds_in_day	
%store	settings_slope	
%store	beach_slopes	
%store	idx_dates	
%store	dates_sat

#	At	this	pt,	go	and	change	to	pyfes	envt	and	continue	

#	Retrieved	stored	variables	in	pyfes	envt	environment	(in	other	notebook)
#	Don't	run	this	cell	here
%store	-r	sitename
%store	-r	output	
%store	-r	geojson_file	
%store	-r	transects	
#	%store	-r	fig	
#	%store	-r	ax	
%store	-r	coords	
%store	-r	date	
%store	-r	cross_distance	
%store	-r	settings_transects	
%store	-r	days_in_year	
%store	-r	seconds_in_day	
%store	-r	settings_slope	
%store	-r	beach_slopes	
%store	-r	idx_dates	
%store	-r	dates_sat

https://html2pdf.com/files/lne115818h877c37/file_g5rs3l1i0ir3l1qe0v7t1mro67/doc/FES2014_installation.md
https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/description-fes2014.html

#	Precautions	to	avoid	"DLL	load	failed":
				#	Run	Anaconda	Prompt	as	admin
#	Don't	run	this	cell	here
import	os

#	Option	1.	if	FES2014	global	tide	model	is	setup
import	pyfes
#	point	to	the	folder	where	you	downloaded	the	.nc	files
filepath	=	r'C:\Users\z5030440\OneDrive	-	UNSW\fes-2.9.1-Source\data\fes2014'
config_ocean	=	os.path.join(filepath,	'ocean_tide.ini')	#	change	to	ocean_tide.ini
config_load	=		os.path.join(filepath,	'load_tide.ini')		#	change	to	load_tide.ini
ocean_tide	=	pyfes.Handler("ocean",	"io",	config_ocean)
load_tide	=	pyfes.Handler("radial",	"io",	config_load)

#	#	Don't	run	this	cell	here
#	Once	again,	store	all	the	variables	obtained	so	far
%store	sitename
%store	output	
%store	geojson_file	
%store	transects	
%store	fig	
%store	ax	
%store	coords	
%store	date	
%store	cross_distance	
%store	settings_transects	
%store	days_in_year	
%store	seconds_in_day	
%store	settings_slope	
%store	beach_slopes	
%store	idx_dates	
%store	dates_sat
%store	filepath
%store	config_ocean

%store	config_load	
%store	ocean_tide	
%store	load_tide	
%store	coords	
%store	time_step
%store	dates_fes
%store	tide_fes
%store	tide_sat
#	%store	fig	
#	%store	ax	

#	Don't	run	this	cell	here
#	coordinates	of	the	location	(always	select	a	point	1-2km	offshore	from	the	beach)
				#	if	the	model	returns	NaNs,	change	the	location	of	your	point	further	offshore.
coords	=	[151.332209,	-33.723772]
#	get	tide	time-series	with	15	minutes	intervals
time_step	=	15*60
dates_fes,	tide_fes	=	SDS_slope.compute_tide(coords,settings_slope['date_range'],time_step,ocean_tide,load_tide)
#	get	tide	level	at	time	of	image	acquisition
tide_sat	=	SDS_slope.compute_tide_dates(coords,	dates_sat,	ocean_tide,	load_tide)

#	plot	tide	time-series
fig,	ax	=	plt.subplots(1,1,figsize=(12,3),	tight_layout=True)
ax.set_title('Sub-sampled	tide	levels')
ax.grid(which='major',	linestyle=':',	color='0.5')
ax.plot(dates_fes,	tide_fes,	'-',	color='0.6')
ax.plot(dates_sat,	tide_sat,	'-o',	color='k',	ms=4,	mfc='w',lw=1)
ax.set_ylabel('tide	level	[m]')
ax.set_ylim(SDS_slope.get_min_max(tide_fes));

#	ONLY	RUN	THIS	cell	onwards	after	activating	coastsat	again	and	opening	THIS	notebook,	retrieve	stored	variables
%store	-r	sitename
%store	-r	output	
%store	-r	geojson_file	
%store	-r	transects	
#	%store	fig	
#	%store	ax	
%store	-r	coords	
%store	-r	date	
%store	-r	cross_distance	
%store	-r	settings_transects	
%store	-r	days_in_year	
%store	-r	seconds_in_day	
%store	-r	settings_slope	
%store	-r	beach_slopes	
%store	-r	idx_dates	
%store	-r	dates_sat

Option	2:	load	the	tide	levels	from	your	own	file

If	you	prefer	to	use	measured	water	levels	or	astronomical	tides	from	your	own	model,	you	can	provide	your	own	file	with	the	tide	levels
associated	with	the	dates	at	which	the	shorelines	where	mapped	(dates_sat).	An	example	is	provided	below,	you	will	need	to	create	a
numpy.array	called	 tides_sat 	which	contains	an	array	of	tide	levels	corresponding	to	each	date	in	 dates_sat .

4.	Peak	tidal	frequency

Find	the	peak	tidal	frequency,	frequency	band	at	which	the	energy	is	the	largest	in	the	subsampled	tide	level	time-series.

Most	sites	will	have	a	minimum	sampling	period	of	8	days,	but	it	can	happen	that	because	of	overlapping	images	at	some	sites,	a	minimum
sampling	period	of	7	days	is	achieved,	then	you	can	use	7	days	instead	of	8	by	setting	 settings_slope['n_days]	=	7 .	Don't	use	a
sampling	period	of	less	than	7	days.	If	the	plot	of	timestep	distribution	doesn't	show	a	peak	at	7	or	8	days,	you	will	not	be	able	to	apply	this
technique	as	you	don't	have	enough	images.

%store	-r	filepath
%store	-r	config_ocean

%store	-r	config_load	
%store	-r	coords	
%store	-r	time_step
%store	-r	dates_fes
%store	-r	tide_fes
%store	-r	tide_sat
#	%store	fig	
#	%store	ax	

#	Option	2.	load	tide	levels	corresponding	to	"dates_sat"	from	a	file
#	with	open(os.path.join('example_data',	sitename	+	'_tide'	+	'.pkl'),	'rb')	as	f:
#					tide_data	=	pickle.load(f)	
#	tide_sat	=	tide_data['tide']
#	print(tides_sat)

#	plot	time-step	distribution
t	=	np.array([_.timestamp()	for	_	in	dates_sat]).astype('float64')
delta_t	=	np.diff(t)
fig,	ax	=	plt.subplots(1,1,figsize=(12,3),	tight_layout=True)
ax.grid(which='major',	linestyle=':',	color='0.5')
bins	=	np.arange(np.min(delta_t)/seconds_in_day,	np.max(delta_t)/seconds_in_day+1,1)-0.5
ax.hist(delta_t/seconds_in_day,	bins=bins,	ec='k',	width=1);
ax.set(xlabel='timestep	[days]',	ylabel='counts',
							xticks=settings_slope['n_days']*np.arange(0,20),
							xlim=[0,50],	title='Timestep	distribution');

#	find	tidal	peak	frequency
settings_slope['n_days']	=	8
settings_slope['freqs_max']	=	SDS_slope.find_tide_peak(dates_sat,tide_sat,settings_slope)

5.	Estimate	the	beach	slope

The	beach	slope	along	each	transect	is	estimated	by	finding	the	slope	that,	when	used	for	tidal	correction,	minimises	the	energy	in	the	peak
tidal	frequency	band.	Based	on	our	validation	study,	this	slopes	corresponds	to	the	beach-face	slope	between	mean	sea	level	(MSL)	and
mean	high	water	springs	(MHWS).

Beach	slope	at	transect	1:	1.000
Beach	slope	at	transect	2:	1.000
Beach	slope	at	transect	3:	1.000
Beach	slope	at	transect	4:	1.000
Beach	slope	at	transect	5:	1.000

#	estimate	beach-face	slopes	along	the	transects
slope_est,	cis	=	dict([]),	dict([])
for	key	in	cross_distance.keys():
				#	remove	NaNs
				idx_nan	=	np.isnan(cross_distance[key])
				dates	=	[dates_sat[_]	for	_	in	np.where(~idx_nan)[0]]
				tide	=	tide_sat[~idx_nan]
				composite	=	cross_distance[key][~idx_nan]
				#	apply	tidal	correction
				tsall	=	SDS_slope.tide_correct(composite,tide,beach_slopes)
				title	=	'Transect	%s'%key
				SDS_slope.plot_spectrum_all(dates,composite,tsall,settings_slope,	title)
				slope_est[key],cis[key]	=	SDS_slope.integrate_power_spectrum(dates,tsall,settings_slope)
				print('Beach	slope	at	transect	%s:	%.3f'%(key,	slope_est[key]))

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

