
INTRODUCTION TO
EXTENDING EJABBERD

USING ERLANG FOR THE FIRST TIME
 / Kyle Burton @kyleburton

http://github.com/kyleburton
http://twitter.com/kyleburton

INCORPORATE CHAT INTO OUR PRODUCT
Quickly: Use Standard Software
Be Robust: Support Clustering and HA
Support multi-person Rooms

EJABBERD
Met all of our initial requirements, then things changed...

EJABBERD EXTENDED
See who is in a room
Peek at the messags in a room
Post a message to a room on behalf of a user
Pre-create Rooms
Create user credentials

CHOICES CHOICES
Do we use the existing tools and extend XMPP itself?

Do we create an alternate interface into eJabberd's
internals?

1: EXTEND XMPP
PRO: can use existing libs (bosh, smack)
CON: smack is flaky from the JVM
CON: normal users could make these calls
CON: may break standard clients (pidgin)
CON: mod_muc prevents the same user from joining the
room multiple times (dealbreaker!)

2: REST API
PRO: easy to call into from the JVM
PRO: easy to map actions to RESTful URLs
PRO: mod_restul_admin has 1 of our required features
already
CON: have to hack Erlang (PRO)

REST API, I CHOOSE YOU!
Simplicity wins.

EJABBERD INTERNALS
eJabberd is built on Erlang's OTP Behaviors

OTP BEHAVIORS
gen_sever
gen_fsm
gen_event
supervisor

GEN_FSM
mod_muc_room is a gen_fsm.

It has a state which contains what we need:

list of users
message history

WHAT NOW?
All the pieces were now laid out for us, so how do we hack

eJabberd and Erlang?

A strange new world awaited us...

ERLANG: LANGUAGE SEMANTICS
Expression Based
Single Assignment, [generally] Immutable Types
Pattern Matching and Destructuring
Function Clauses
Syntax: comma, semi-colon; and period.
Data Types: atoms, numbers, lists, tuples, binaries, pid,
function
There is no String type!

ERLANG: RUNTIME SEMANTICS
iolists
recursion and process state
processes
message passing
the mnesia distributed database
code path
hot reloading code
upgrading a process

LESSONS LEARNED
Erlang Cookie
JSON in a land with no string
mod_restful_debug
REPL
Remote Shell
ejabberdctl live

LESSON: COOKIE
ejabberd didn't use

$HOME/.erlang.cookie

like all the other kids, it used

/var/lib/ejabberd/.erlang.cookie

instead :/

JSON
mod_restful_mochijson2 was hard for us to see how it

worked.

Not having The string==list(integer) equivalence in
our heads added to the confusion.

MOD_RESTFUL_DEBUG
We wrote a simple gen_server that held a dictionary so we
could message it to store or retrieve data. We then used this

from inside the other code to capture values, and with
ejabberdctl debug we could query and see the values.

This was a huge help to our productivity.

REPL
Having access to Erlang's repl was nice, but...

EJABBERDCTL DEBUG
Having a remote shell that was directly interacting with the

server was even better.

Between the remote shell and our debugging service, it was
almost like swank.

EJABBERDCTL LIVE
This runs ejabberd in the foreground, not as a daemon. This

was invaluable when we broke the service at startup:

we borked the configuration file
we messed up the nodename and couldn't connect the
debug console
we tried to call a module:function that didn't exist.

HOTLOADING CODE
Recompile, copy the *.beam files into the proper place and

then:

l(module_name).
nl(module_name).

DEMO
Go flail on the keyboard and make mistakes.

Extend Ejabberd
Add Modules
Code, Reload and Interact
mod_muc_room stores history in a dict not atable, so there
is no persistance :(

QUESTIONS?

THANK YOU!

REFERENCES
erlang docs: http://www.erlang.org/doc/
iolists: http://prog21.dadgum.com/70.html

