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Lyft ~4 years ago
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Simple! No SoA! (but still not that simple)



Lyft ~2 years ago
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State of SoA networking in industry

Languages and frameworks.

Protocols (HTTP/1, HTTP/2, gRPC, databases, caching, etc.).
Infrastructures (laaS, CaaS, on premise, etc.).

Intermediate load balancers (AWS ELB, F5, etc.).
Observability output (stats, tracing, and logging).

Implementations (often partial) of retry, circuit breaking, rate limiting,
timeouts, and other distributed systems best practices.

Authentication and Authorization.
e Perlanguage libraries for service calls.



State of SoA networking in industry

A really big and confusing mess...



What is Envoy

The network should be transparent to applications. When
network and application problems do occur it should be easy to
determine the source of the problem.

This sounds great! But it turns out it's really, really hard.



What is Envoy

Out of process architecture: Let's do a lot of really hard stuff in one place and
allow application developers to focus on business logic.

Modern C++11 code base: Fast and productive.

L3/L4 filter architecture: A byte proxy at its core. Can be used for things other
than HTTP (e.g., MongoDB, redis, stunnel replacement, TCP rate limiter, etc.).

HTTP L7 filter architecture: Make it easy to plug in different functionality.
HTTP/2 first! (Including gRPC and a nifty gRPC HTTP/1.1 bridge).
Service discovery and active/passive health checking.

Advanced load balancing: Retry, timeouts, circuit breaking, rate limiting,
shadowing, outlier detection, etc.

Best in class observability: stats, logging, and tracing.
Edge proxy: routing and TLS.



Envoy service to service topology
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Lyft today

- Legacy monolith
Clients (+Envoy) MongoDB
: ]
Front Snvoy ¢ — Go services
(via TCP ELB) -~ DynamoDB
: ]
: Stats / tracing
Pyt?fg nsveorv;ces (direct from
1 y Envoy)
. Discovery
Service mesh! Awesome! No fear SoAl




Eventually consistent service discovery

e Fully consistent service discovery systems are very popular (ZK, etcd, consul,
etc.).

e In practice they are hard to run at scale.

e Service discovery is actually an eventually consistent problem. Let’s
recognize that and design for it.

e Envoy is designed from the get go to treat service discovery as lossy.
e Active health checking used in combination with service discovery to produce a

routable overlay.
Discovery Status HC OK HC Failed

Discovered Route Don’t Route

Absent Route Don’t Route / Delete



Advanced load balancing

Different service discovery types.

Zone aware least request load balancing.

Dynamic stats: Per zone, canary specific stats, etc.

Circuit breaking: Max connections, requests, and retries.

Rate limiting: Integration with global rate limit service.

Shadowing: Fork traffic to a test cluster.

Retries: HTTP router has built in retry capability with different policies.
Timeouts: Both “outer” (including all retries) and “inner” (per try) timeouts.
Outlier detection: Consecutive 5xx

Deploy control: Blue/green, canary, etc.

Fault injection



Observability

e Observability is by far the most important thing that Envoy provides.

e Having all SoA traffic transit through Envoy gives us a single place where we
can:

o Produce consistent statistics for every hop
o Create and propagate a stable request ID / tracing context
o Consistent logging
o Distributed tracing




Observability: Per service auto-generated panel
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Observability: Service to service template dashboard

Template with drop down for every service
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Observability: Envoy global health dashboard
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Observability: Distributed tracing
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Observability: Logging
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Performance matters for a service proxy

e For most companies developer time is worth more than infra costs (cost vs.
throughput).

e However, Latency and predictability is what matters. And in particular tail
latency (P99+).

e Virtual laaS, multiple languages and runtimes, languages that use GC: Niceties
that improve productivity and reduce upfront dev costs, but make debugging
really difficult.

e Ability to reason about overall performance

and reliability is critical.




Envoy config/process management @Lyft

e

“Front” Envoy
build/deploy

l

Binaries/configs

Jinja JSON Service
templates manifests
l
Service/Envoy
deploy
l
StS Envoy
configs

Salt/runit

Combination of static and dynamic
configs.

Service egress, circuit breaking, etc.
configs specified in manifest.

Service configs built on service host at
service/envoy deploy time.

Next up for Lyft: config service via
APIs!



Envoy thin clients @Lyft

from lyft.api_client import EnvoyClient

switchboard client = EnvoyClient(
service="switchboard'

)

msg = {'template': 'breaksignout'}

headers = {'x-lyft-user-id': 12345647363394}

switchboard_client.post("/v2/messages"”, data=msg, headers=headers)

Abstract away egress port

Request ID/tracing propagation

Guide devs into good timeout, retry, etc. policies
Similar thin clients for Go and PHP



Envoy MongoDB proxy @Lyft

Go/PHP/Python Envoy
service Filter chain MongoS - MongoD

/\ )

Global rate limit
service

Cool stats

MongoDB is Weh Scale

No more death spirals! Web scale!

Filters:
e |4 global rate limit (limit CPS into MongoS)
e Mongo sniffer (cool stats)
e TCP proxy (MongoS load balancing)




Envoy deployment @Lyft

> 100 services.

> 10,000 hosts.

> 2,000,000 RPS.

All service to service traffic (REST and gRPC).
Use gRPC bridge to unlock Python gevent clients.
MongoDB proxy.

DynamoDB proxy.

External service proxy (AWS and other partners).
Kibana/Elastic Search for logging.

LightStep for tracing.

Wavefront for stats (via statsd).



Thanks for coming!

We are super excited about building a community around Envoy. Talk to us if
you need help getting started.

https://lyft.qithub.io/envoy/

Lyft is hiring: Contact us if you want to work on hard scaling problems in a fast
moving company: https://www.lyft.com/jobs



https://lyft.github.io/envoy/
https://lyft.github.io/envoy/
https://www.lyft.com/jobs

Envoy edge proxy topology

“Front” Envoy
Edge Proxy
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External Clients

HTTP/1.1, HTTP/2, TLS

HTTP/2, TLS,|Client Auth

“Front” Envoy
Edge Proxy
Region #2

Private
Infra



