envoy

by lyﬂ

Lyft's Envoy: Experiences Operating a Large Service Mesh
SREcon17/
Matt Klein / @mattklein123, Software Engineer @Lyft

Lyft ~4 years ago
Clients AWS ELB PHP/ Apache
monolith

MongoDB

Simple! No SoA! (but still not that simple)

Lyft ~2 years ago

Clients

AWS external
ELB

Not simple! SoA! With monolith!
(and some haproxy/nsq)

MongoDB

]
PHP / Apache |
monolith AWS internal
(+haproxy/nsq) ELBs
I]
DynamoDB :
Python services

State of SoA networking in industry

Languages and frameworks.

Protocols (HTTP/1, HTTP/2, gRPC, databases, caching, etc.).
Infrastructures (laaS, CaaS, on premise, etc.).

Intermediate load balancers (AWS ELB, F5, etc.).
Observability output (stats, tracing, and logging).

Implementations (often partial) of retry, circuit breaking, rate limiting,
timeouts, and other distributed systems best practices.

Authentication and Authorization.
e Perlanguage libraries for service calls.

State of SoA networking in industry

A really big and confusing mess...

What is Envoy

The network should be transparent to applications. When
network and application problems do occur it should be easy to
determine the source of the problem.

This sounds great! But it turns out it's really, really hard.

What is Envoy

Out of process architecture: Let's do a lot of really hard stuff in one place and
allow application developers to focus on business logic.

Modern C++11 code base: Fast and productive.

L3/L4 filter architecture: A byte proxy at its core. Can be used for things other
than HTTP (e.g., MongoDB, redis, stunnel replacement, TCP rate limiter, etc.).

HTTP L7 filter architecture: Make it easy to plug in different functionality.
HTTP/2 first! (Including gRPC and a nifty gRPC HTTP/1.1 bridge).
Service discovery and active/passive health checking.

Advanced load balancing: Retry, timeouts, circuit breaking, rate limiting,
shadowing, outlier detection, etc.

Best in class observability: stats, logging, and tracing.
Edge proxy: routing and TLS.

Envoy service to service topology

Service Cluster
|

Service

Envoy

HTTP/2

Service Cluster

Service

A
A\N

REST / gRPC

Envoy

A

/

\

External Services

7

Discovery

Lyft today

- Legacy monolith
Clients (+Envoy) MongoDB
:]
Front Snvoy ¢ — Go services
(via TCP ELB) -~ DynamoDB
:]
: Stats / tracing
Pyt?fg nsveorv;ces (direct from
1 y Envoy)
. Discovery
Service mesh! Awesome! No fear SoAl

Eventually consistent service discovery

e Fully consistent service discovery systems are very popular (ZK, etcd, consul,
etc.).

e In practice they are hard to run at scale.

e Service discovery is actually an eventually consistent problem. Let’s
recognize that and design for it.

e Envoy is designed from the get go to treat service discovery as lossy.
e Active health checking used in combination with service discovery to produce a

routable overlay.
Discovery Status HC OK HC Failed

Discovered Route Don’t Route

Absent Route Don’t Route / Delete

Advanced load balancing

Different service discovery types.

Zone aware least request load balancing.

Dynamic stats: Per zone, canary specific stats, etc.

Circuit breaking: Max connections, requests, and retries.

Rate limiting: Integration with global rate limit service.

Shadowing: Fork traffic to a test cluster.

Retries: HTTP router has built in retry capability with different policies.
Timeouts: Both “outer” (including all retries) and “inner” (per try) timeouts.
Outlier detection: Consecutive 5xx

Deploy control: Blue/green, canary, etc.

Fault injection

Observability

e Observability is by far the most important thing that Envoy provides.

e Having all SoA traffic transit through Envoy gives us a single place where we
can:

o Produce consistent statistics for every hop
o Create and propagate a stable request ID / tracing context
o Consistent logging
o Distributed tracing

Observability: Per service auto-generated panel

environment

~v ratelimit
ratelimit

Github |
Deploy |
Code Health
| Envoy

{9 - g8 ratelimit- %« 2 o € ZoomOut » @ now-6hto now-2m Refresh every 1r
production ~
Response Time Call volume per second Server error (5xx) percent 400s and 500s per second
25 ms 26K , 0.30% 1.0
20ms 24K b ¥ 05
15ms 29 vl 0.20% .
10ms s i 0.10%
5ms 20 K v M : 0.5
0ms 18K) A =P 1.0
10:00 12:00 14:00 10:00 12:00 14:00 10:00 12:00 14:00 10:00 12:00 14:0

Error Logs |
Live tracing
—

Links to logging and tracing

Observability: Service to service template dashboard

Template with drop down for every service

O\ @® service_to_service . w B B # ZoomOut @ 6 hours ago to 2 minutes ago , ~ v
originating_service: api~ destination_service: locations -~
4 DASHBOARD README
EGRESS FROM API TO LOCATIONS
Egress CPS / RPS Total Connections / Requests Cluster Membership Upstream Response Time
20K 40K 400 150 ms
15Kﬁ_\ﬁw 0K = "/Af\—/ 300* ‘ 100mstWMWY*MWWW
10K 20K 200 | |
5K 10K 100 [50 ms e b
] 0 glE . 0ms - - =
06:00 08:00 10:00 06:00 08:00 10:00 06:00 08:00 10:00 06:00 08:00 10:00
Success Rate (non-5xx responses) 4xx % Upstream Request Errors Upstream Request Retry
100.00005% 0.00030% {115 5
AL 0.00020% 1.0 1.0
99.99995% [t
9
B Soto0T 0.00010% }‘ “ l“ 0.5 t ‘ 05
99.09985% 0% | “‘ 0 Y | PRI U W UM o P .LA hey 0

06:00 08:00 10:00 06:00 08:00 10:00 06:00 08:00 10:00 06:00 08:00 10:00

Observability: Envoy global health dashboard

== Envoy-Global . * € B & ZoomOut @ 6 hours ago to 2 minutes ago refresh
DASHBOARD README
TOP LEVEL ALL ENVOYS
RPS CPS Success Rate (non-5xx responses) Connections
75K 100.05 8 Mil
e iy 100.00 b —r—
70K O I S— - eMIl ————————
WWWM’W ek ; ﬁy’rw “W'\)» M ‘w o006 >~y ‘lr“ﬂr F“’W"YYL e A=
i/ A .
60 K “W il /\f W Mw“{w' N 99.90 ' 2 Mil
,____—-—————’J——— W 8
Mwﬂr. 2 i
55K 99.85 0
6:00 08:00 10:00 06:00 08:00 10:00 06:00 08:00 10:00 06:00 08:00 10:00
Deployed Version Upstream failures Upstream Retries
61010000 Mil 500 30
61005000 Mil 400 o
: 300
61000000 Mil
200 I 10
60995000 Mil 100 ‘\. ﬂ
60990000 Mil [- S DTSN Ak A, 0 - L b
06:00 07:00 08:00 09:00 10:00 11:00 06:00 07:00 08:00 09:00 10:00 11:00 06:00 07:00 08:00 09:00 10:00 11
CROSS ZONE TRAFFIC

RATELIMIT

Observability: Distributed tracing

Expand all spans

ul 1 L 1 | =l
request

5 513ms
Iyft-ios { =

B Ingress et)
envoy-production-iad

] . —________— __EO
coupons-production-iad

egress
coupons-production-iad

§ 2000us
'Z\JJ\JUu

egress
coupons-production-iad

a 2190us

egress
coupons-production-iad

a 2570us

egress
coupons-production-iad

a 2560ps

£ i CHE
coupons-production-iad

egress CO—
coupons-production-iad

ingress
auth-production-iad

§ 1750us
] L

Observability: Logging

I . ana Discover Visualize Dashboard Settings

unique_id:82515ede-9a51-9c63-b47d-002a6¢cf74471

[logstash-]YYYY.MM.DD-HH

Selected Fields October 30th 2016, 20:38:26.391 - October 30th 2016, 20:53:26.391 — by 30 seconds
2
Available Fields 1.5
t
3 1
Popular S
duration_millis o
b) 0
BVaSIon 20:30:00 20:40:00 20:41:00 20:42:00 20:43:00 20:44:00 204500 20:46:00 20:47:00 20:48:00 20:49:00 20:50:00 20:
source @timestamp per 30 seconds
A
Quick Count @ (6
/var/log/envoy/ingress_http_erro... @ @ Time _source

i » October 30th 2016, 20:51:38.001 ynique id: 82515ede-9a51-9c63-b47d-002a6cf74471 asg: envoy bytes_received: 2 bytes sent: 0

Nvarflog/envoy/access_errorlog @ & o o
0.5.22 duration_millis: 556 host: envoy-production-iad-8c37a31f host_header: api-internal.lyf

P/1.1 method: POST search.uuid: 82515ede-9a51-9c63-b47d-002a6cf74471 search.lyft_id: 77392617
isualiz

log/envoy/access_error.log status: 500 upstream ip: tcp://10.0.127.39:9211 upstream time_millij

slus e /77207261 72AR006GA0ARA /AriverS+arile mear amant = Tnherhediiler-warker @ 11 A A+ imectamn: Nednhar

Meiva

Performance matters for a service proxy

e For most companies developer time is worth more than infra costs (cost vs.
throughput).

e However, Latency and predictability is what matters. And in particular tail
latency (P99+).

e Virtual laaS, multiple languages and runtimes, languages that use GC: Niceties
that improve productivity and reduce upfront dev costs, but make debugging
really difficult.

e Ability to reason about overall performance

and reliability is critical.

Envoy config/process management @Lyft

e

“Front” Envoy
build/deploy

l

Binaries/configs

Jinja JSON Service
templates manifests
l
Service/Envoy
deploy
l
StS Envoy
configs

Salt/runit

Combination of static and dynamic
configs.

Service egress, circuit breaking, etc.
configs specified in manifest.

Service configs built on service host at
service/envoy deploy time.

Next up for Lyft: config service via
APIs!

Envoy thin clients @Lyft

from lyft.api_client import EnvoyClient

switchboard client = EnvoyClient(
service="switchboard'

)

msg = {'template': 'breaksignout'}

headers = {'x-lyft-user-id': 12345647363394}

switchboard_client.post("/v2/messages"”, data=msg, headers=headers)

Abstract away egress port

Request ID/tracing propagation

Guide devs into good timeout, retry, etc. policies
Similar thin clients for Go and PHP

Envoy MongoDB proxy @Lyft

Go/PHP/Python Envoy
service Filter chain MongoS - MongoD

/\)

Global rate limit
service

Cool stats

MongoDB is Weh Scale

No more death spirals! Web scale!

Filters:
e |4 global rate limit (limit CPS into MongoS)
e Mongo sniffer (cool stats)
e TCP proxy (MongoS load balancing)

Envoy deployment @Lyft

> 100 services.

> 10,000 hosts.

> 2,000,000 RPS.

All service to service traffic (REST and gRPC).
Use gRPC bridge to unlock Python gevent clients.
MongoDB proxy.

DynamoDB proxy.

External service proxy (AWS and other partners).
Kibana/Elastic Search for logging.

LightStep for tracing.

Wavefront for stats (via statsd).

Thanks for coming!

We are super excited about building a community around Envoy. Talk to us if
you need help getting started.

https://lyft.qithub.io/envoy/

Lyft is hiring: Contact us if you want to work on hard scaling problems in a fast
moving company: https://www.lyft.com/jobs

https://lyft.github.io/envoy/
https://lyft.github.io/envoy/
https://www.lyft.com/jobs

Envoy edge proxy topology

“Front” Envoy
Edge Proxy
Region #1

External Clients

HTTP/1.1, HTTP/2, TLS

HTTP/2, TLS,|Client Auth

“Front” Envoy
Edge Proxy
Region #2

Private
Infra

