
Lyft's Envoy: Experiences Operating a Large Service Mesh
SREcon17
Matt Klein / @mattklein123, Software Engineer @Lyft

Lyft ~4 years ago

PHP / Apache
monolith

MongoDB

InternetClients AWS ELB

Simple! No SoA! (but still not that simple)

Lyft ~2 years ago

PHP / Apache
monolith

(+haproxy/nsq)

MongoDB

Internet

Clients

AWS external
ELB

DynamoDB

AWS internal
ELBs

Python services

Not simple! SoA! With monolith!
(and some haproxy/nsq)

State of SoA networking in industry

● Languages and frameworks.
● Protocols (HTTP/1, HTTP/2, gRPC, databases, caching, etc.).
● Infrastructures (IaaS, CaaS, on premise, etc.).
● Intermediate load balancers (AWS ELB, F5, etc.).
● Observability output (stats, tracing, and logging).
● Implementations (often partial) of retry, circuit breaking, rate limiting,

timeouts, and other distributed systems best practices.
● Authentication and Authorization.
● Per language libraries for service calls.

State of SoA networking in industry

A really big and confusing mess...

What is Envoy

The network should be transparent to applications. When
network and application problems do occur it should be easy to
determine the source of the problem.

This sounds great! But it turns out it’s really, really hard.

What is Envoy

● Out of process architecture: Let’s do a lot of really hard stuff in one place and
allow application developers to focus on business logic.

● Modern C++11 code base: Fast and productive.
● L3/L4 filter architecture: A byte proxy at its core. Can be used for things other

than HTTP (e.g., MongoDB, redis, stunnel replacement, TCP rate limiter, etc.).
● HTTP L7 filter architecture: Make it easy to plug in different functionality.
● HTTP/2 first! (Including gRPC and a nifty gRPC HTTP/1.1 bridge).
● Service discovery and active/passive health checking.
● Advanced load balancing: Retry, timeouts, circuit breaking, rate limiting,

shadowing, outlier detection, etc.
● Best in class observability: stats, logging, and tracing.
● Edge proxy: routing and TLS.

Envoy service to service topology

Service Cluster

Envoy

Service

Discovery

Service Cluster

Envoy

Service

External Services

HTTP/2
REST / gRPC

Lyft today

Legacy monolith
(+Envoy) MongoDB

Internet

Clients

“Front” Envoy
(via TCP ELB) DynamoDB

Python services
(+Envoy)

Service mesh! Awesome! No fear SoA!

Go services
(+Envoy)

Stats / tracing
(direct from

Envoy)

Discovery

Eventually consistent service discovery

● Fully consistent service discovery systems are very popular (ZK, etcd, consul,
etc.).

● In practice they are hard to run at scale.
● Service discovery is actually an eventually consistent problem. Let’s

recognize that and design for it.
● Envoy is designed from the get go to treat service discovery as lossy.
● Active health checking used in combination with service discovery to produce a

routable overlay.

Discovery Status HC OK HC Failed

Discovered Route Don’t Route

Absent Route Don’t Route / Delete

Advanced load balancing

● Different service discovery types.
● Zone aware least request load balancing.
● Dynamic stats: Per zone, canary specific stats, etc.
● Circuit breaking: Max connections, requests, and retries.
● Rate limiting: Integration with global rate limit service.
● Shadowing: Fork traffic to a test cluster.
● Retries: HTTP router has built in retry capability with different policies.
● Timeouts: Both “outer” (including all retries) and “inner” (per try) timeouts.
● Outlier detection: Consecutive 5xx
● Deploy control: Blue/green, canary, etc.
● Fault injection

Observability

● Observability is by far the most important thing that Envoy provides.
● Having all SoA traffic transit through Envoy gives us a single place where we

can:
○ Produce consistent statistics for every hop
○ Create and propagate a stable request ID / tracing context
○ Consistent logging
○ Distributed tracing

Observability: Per service auto-generated panel

Links to logging and tracing

Observability: Service to service template dashboard

Template with drop down for every service

Observability: Envoy global health dashboard

Observability: Distributed tracing

Observability: Logging

Performance matters for a service proxy

● For most companies developer time is worth more than infra costs (cost vs.
throughput).

● However, Latency and predictability is what matters. And in particular tail
latency (P99+).

● Virtual IaaS, multiple languages and runtimes, languages that use GC: Niceties
that improve productivity and reduce upfront dev costs, but make debugging
really difficult.

● Ability to reason about overall performance
 and reliability is critical.

Envoy config/process management @Lyft

Jinja JSON
templates

“Front” Envoy
build/deploy

Binaries/configs

Service
manifests

Service/Envoy
deploy

StS Envoy
configs

Salt/runit

● Combination of static and dynamic
configs.

● Service egress, circuit breaking, etc.
configs specified in manifest.

● Service configs built on service host at
service/envoy deploy time.

● Next up for Lyft: config service via
APIs!

Envoy thin clients @Lyft

from lyft.api_client import EnvoyClient

switchboard_client = EnvoyClient(

 service='switchboard'

)

msg = {'template': 'breaksignout'}

headers = {'x-lyft-user-id': 12345647363394}

switchboard_client.post("/v2/messages", data=msg, headers=headers)

● Abstract away egress port
● Request ID/tracing propagation
● Guide devs into good timeout, retry, etc. policies
● Similar thin clients for Go and PHP

Envoy MongoDB proxy @Lyft

Go/PHP/Python
service

Envoy
Filter chain MongoSMongoSMongoS

MongoSMongoSMongoD

Global rate limit
service Cool stats

Filters:
● L4 global rate limit (limit CPS into MongoS)
● Mongo sniffer (cool stats)
● TCP proxy (MongoS load balancing)

No more death spirals! Web scale!

Envoy deployment @Lyft

● > 100 services.
● > 10,000 hosts.
● > 2,000,000 RPS.
● All service to service traffic (REST and gRPC).
● Use gRPC bridge to unlock Python gevent clients.
● MongoDB proxy.
● DynamoDB proxy.
● External service proxy (AWS and other partners).
● Kibana/Elastic Search for logging.
● LightStep for tracing.
● Wavefront for stats (via statsd).

Q&A

● Thanks for coming!
● We are super excited about building a community around Envoy. Talk to us if

you need help getting started.
● https://lyft.github.io/envoy/
● Lyft is hiring: Contact us if you want to work on hard scaling problems in a fast

moving company: https://www.lyft.com/jobs

https://lyft.github.io/envoy/
https://lyft.github.io/envoy/
https://www.lyft.com/jobs

Envoy edge proxy topology

“Front” Envoy
Edge Proxy
Region #1

InternetExternal Clients

HTTP/1.1, HTTP/2, TLS

“Front” Envoy
Edge Proxy
Region #2

Private
Infra

HTTP/2, TLS, Client Auth

