Statistical Hypothesis Testing in R
SHT aims at providing a casket of tools for hypothesis testing procedures ranging from classical to modern techniques. We hope it not be used as a primary means of p-hacking.
Installation
SHT released version can be obtained from CRAN with:
install.packages("SHT")or the up-to-date development version from github:
## install.packages("devtools")
## library(devtools)
devtools::install_github("kisungyou/SHT")List of Available Tests
We categorized available functions by their object of interest for better navigation.
- Notations x and y refer to samples.
- Authors are referred by last names. See the help page of each function for complete references.
- k-sample means that the test is checking the homogeneity across multiple samples.
- Function naming convention is {
type of test.test name}, or {type of test.yearauthors}, where there are two or three authors, we took their initials as abbreviation or simply the last name of the first author otherwise. usek1dandusekndlets a user to apply any k-sample tests for two-sample testings.- When ℝp notation is used, it denotes multivariate procedures.
0. utilities
| function name | description |
|---|---|
usek1d |
apply k-sample test method for two univariate samples |
useknd |
apply k-sample test method for two multivariate samples |
1. tests for univariate mean μ ∈ ℝ
| function name | authors | description of H0 |
|---|---|---|
mean1.ttest |
Student (1908) | μx {≤, =, ≥} μ0 (1-sample) |
mean2.ttest |
Student (1908) & Welch (1947) | μx {≤, =, ≥} μy (2-sample) |
meank.anova |
- | μ1 = ⋯ = μk (k-sample) |
2. tests for multivariate mean μ ∈ ℝp
| function name | authors | description of H0 |
|---|---|---|
mean1.1931Hotelling |
Hotelling (1931) | μx = μ0 (1-sample) |
mean1.1958Dempster |
Dempster (1958, 1960) | μx = μ0 (1-sample) |
mean1.1996BS |
Bai and Saranadasa (1996) | μx = μ0 (1-sample) |
mean1.2008SD |
Srivastava and Du (2008) | μx = μ0 (1-sample) |
mean2.1931Hotelling |
Hotelling (1931) | μx = μy (2-sample) |
mean2.1958Dempster |
Dempster (1958, 1960) | μx = μy (2-sample) |
mean2.1965Yao |
Yao (1965) | μx = μy (2-sample) |
mean2.1980Johansen |
Johansen (1980) | μx = μy (2-sample) |
mean2.1986NVM |
Nel and Van der Merwe (1986) | μx = μy (2-sample) |
mean2.1996BS |
Bai and Saranadasa (1996) | μx = μy (2-sample) |
mean2.2004KY |
Krishnamoorthy and Yu (2004) | μx = μy (2-sample) |
mean2.2008SD |
Srivastava and Du (2008) | μx = μy (2-sample) |
mean2.2011LJW |
Lopes, Jacob, and Wainwright (2011) | μx = μy (2-sample) |
mean2.2014CLX |
Cai, Liu, and Xia (2014) | μx = μy (2-sample) |
mean2.2014Thulin |
Thulin (2014) | μx = μy (2-sample) |
meank.2007Schott |
Schott (2007) | μ1 = ⋯ = μk (k-sample) |
meank.2009ZX |
Zhang and Xu (2009) | μ1 = ⋯ = μk (k-sample) |
meank.2019CPH |
Cao, Park, and He (2019) | μ1 = ⋯ = μk (k-sample) |
3. tests for variance σ2
| function name | authors | description of H0 |
|---|---|---|
var1.chisq |
- | σx2 {≤, =, ≥} σ02 (1-sample) |
var2.F |
- | σx2 {≤, =, ≥} σy2 (2-sample) |
vark.1937Bartlett |
Bartlett (1937) | σ12 = ⋯ = σk2 (k-sample) |
vark.1960Levene |
Levene (1960) | σ12 = ⋯ = σk2 (k-sample) |
vark.1974BF |
Brown and Forsythe (1974) | σ12 = ⋯ = σk2 (k-sample) |
4. tests for covariance Σ
| function name | authors | description of H0 |
|---|---|---|
cov1.2012Fisher |
Fisher (2012) | Σx = Σ0 (1-sample) |
cov1.2015WL |
Wu and Li (2015) | Σx = Σ0 (1-sample) |
cov2.2012LC |
Li and Chen (2012) | Σx = Σy (2-sample) |
cov2.2013CLX |
Cai, Liu, and Xia (2013) | Σx = Σy (2-sample) |
cov2.2015WL |
Wu and Li (2015) | Σx = Σy (2-sample) |
covk.2001Schott |
Schott (2001) | Σ1 = ⋯ = Σk (k-sample) |
covk.2007Schott |
Schott (2007) | Σ1 = ⋯ = Σk (k-sample) |
5. simultaneous tests for mean μ and variance σ2 in ℝ1
| function name | authors | description of H0 |
|---|---|---|
mvar1.1998AS |
Arnold and Shavelle (1998) | μx = μ0, σx2 = σ02 (1-sample) |
mvar1.LRT |
- | μx = μ0, σx2 = σ02 (1-sample) |
mvar2.1930PN |
Pearson and Neyman (1930) | μx = μy, σx2 = σy2 (2-sample) |
mvar2.1976PL |
Perng and Littell (1976) | μx = μy, σx2 = σy2 (2-sample) |
mvar2.1982Muirhead |
Muirhead (1982) | μx = μy, σx2 = σy2 (2-sample) |
mvar2.2012ZXC |
Zhang, Xu, and Chen (2012) | μx = μy, σx2 = σy2 (2-sample) |
mvar2.LRT |
- | μx = μy, σx2 = σy2 (2-sample) |
6. simultaneous tests for mean μ and covariance Σ in ℝp
| function name | authors | description of H0 |
|---|---|---|
sim1.2017Liu |
Liu et al. (2017) | μx = μ0, Σx = Σ0 (1-sample) |
sim2.2018HN |
Hyodo and Nishiyama (2018) | μx = μy, Σx = Σy (2-sample) |
7. tests for equality of distributions
| function name | authors | description of H0 |
|---|---|---|
eqdist.2014BG |
Biswas and Ghosh (2014) | FX = FY ∈ ℝ1 & ℝp (2-sample) |
8. goodness-of-fit tests of normality
| function name | authors | description of H0 |
|---|---|---|
norm.1965SW |
Shapiro and Wilk (1965) | FX = Normal ∈ ℝ1 |
norm.1972SF |
Shapiro and Francia (1972) | FX = Normal ∈ ℝ1 |
norm.1980JB |
Jarque and Bera (1980) | FX = Normal ∈ ℝ1 |
norm.1996AJB |
Urzua (1996) | FX = Normal ∈ ℝ1 |
norm.2008RJB |
Gel and Gastwirth (2008) | FX = Normal ∈ ℝ1 |
9. goodness-of-fit tests of uniformity
| function name | authors | description of H0 |
|---|---|---|
unif.2017YMi |
Yang and Modarres (2017) | FX = Uniform ∈ ℝp |
unif.2017YMq |
Yang and Modarres (2017) | FX = Uniform ∈ ℝp |