
 1

An Object Model for Behavioural Planning in a
Dynamic Multi-Agent System

∗∗∗∗ Alex Whittaker, Tiziano Riolfo and Neil Rowlands

A object oriented design template is described for the behavioural control of a multi-
agent system.

Introduction ... 3
Platform... 3

Architecture ... 3

Performance.. 4

Finite State Automata ... 4
Finite State Transition Networks ... 4

Finite State Transducers ... 5

Recursive Transition Networks ... 5

Augmented Transition Networks... 5

Implementation.. 6
The State Machine .. 6

Percepts .. 7
Simple Percepts ... 8

Compound Percepts ... 9

Team Percepts ... 9

Actions... 9
Effectors ... 11

Register Operators ... 11

Communicators .. 11

State Changers... 11

Application... 12
Actions... 12

Percepts .. 12

States .. 13

Editor ... 13

Performance .. 13
Conclusions... 14
Acknowledgements .. 14
References... 15

∗ Psygnosis Ltd.

 2

 3

Introduction
The template presented is being developed at Psygnosis Camden studio for the game
Team Buddies (working title). Broadly speaking, the game presents the player with a
team of up to four agents one of which is under their control, the remainder being
autonomous but responsive to commands. This team is pitted against up to three other
teams, which may be controlled by the computer or by other players across a network.

The game world exists as a three dimensional terrain about which the agents operate.
The agents are anthropomorphic and their actions are limited to movement in two
dimensions, jumping, carrying crates, firing weapons and driving vehicles. As well as
static obstacles within the terrain there are three other features of note:

Crates: These enter the world in designated zones at a constant rate,
they represent the resource with which agents are able to
build toys.

Stacking Pads: By delivering crates to the stacking pads, agents are able to
build larger crates which when opened reveal toys whose
value is broadly proportional to the number of crates put into
the pad.

Toys: Revealed from the crates, toys can be weapons, vehicles
and new team members. Agents need to stack more crates
in order to get more powerful toys, which will increase their
ability to win the game.

There are also neutral agents within the game world, animals and civilians, with which
the player may interact. These must also be controlled with some degree of intelligence,
bringing the maximum number of agents in the game world to approximately forty.

The presence of vehicles in the game world means that the agents must be able to use
different control systems depending on the vehicle type. Certain toys can give the agents
special abilities that should change their behaviour. Furthermore there are several
different types of agents with different abilities, strengths and weaknesses.

The player must be able to control the agents in their team, however they will expect
them to behave intelligently without orders. Because the control interface must be kept
quite simple, agents must be able to interpret player instructions according to their
condition and that of their team.

Platform
A major constraint on the game design is the target hardware platform - a Sony
PlayStation. Whilst this represents a powerful tool for the manipulation of graphical
images, it is not an ideal platform on which to tackle the large search spaces of classical
AI. The machine has 2Mb of main memory, of which one might expect to be allocated
500Kb for data, which is manipulated by a 33Mhz processor. If the system were to be
compared to a PC, the equivalent computing power would be a 486-generation
processor with a high-end graphics card and no floating-point operations.

Architecture
The majority of work involving finite state autonoma (FSA) has been centred on
applications to language parsing; we demonstrate the use of FSA to drive intelligent
agents using limited memory and processing.

We have implemented a behavioural model using an augmented transition network
(ATN) at the highest level, a partial planner to execute some operations such as route
planning, and a model for representation of a database of completed and partial plans.
The model could be extended to allow a completely implemented partial planner for all
actions, however we have so far avoided developing this because of the restrictions of
search.

 4

The ATN is driven by percepts from the agents embodied in the game world. Percepts
are either member variables (The registers of the ATN) or calculations made within the
game world from the agent�s perspective, e.g. Distance from agent to nearest crate.

The ATN, partial plan database and percept database are described in data files and
generated within an editor that allows the agent behaviour to be described by a designer
rather than the programmer. The editor allows us to visualise and manage the complex
nature of the finite state machines.

Performance
The system development is ongoing and the scheduled for completion to beta level on
the PlayStation platform by summer 1999. We have implemented the ATN on a PC
platform and can demonstrate acceptable performance, both in terms of agent
intelligence and compute cycles.

The general nature of the solution makes it applicable to a wide range of problems where
there are a large number of agents operating under stringent performance constraints.

Finite State Automata
The Finite State Automata (FSA) family represents a class of computing machines that
can be used to express a wide range of algorithms in a simple and mathematically
concise way. Whilst they have been most widely explored in natural language parsing
and generation, they do have a long history in agent control, from Walter�s turtle [Walter
1950] which is an analogue implementation of a simple FSA, to the layered subsumption
architectures of Brooks [Brooks 1991].

If we imagine a network of nodes (states) each connected to one or more others by
edges (transitions) the network describes a directed graph. Whilst there can be several
transitions between states, each transition has exactly one percept associated with it and
if that percept is triggered then the agent will cross that arc and change its state
accordingly. In the new state a different set of percepts will control changes to different
states.

For example in Figure 1 if we begin in state A, then the state D can only be reached
through percept 2 or through percept 1 followed by 3 going via state B (and not the other
way around).

A

B

C

D

1

2

3

3

1

State

Percept

Transition

Figure 1: Simple Finite State Transition network
The FSA family extends to finite state transition networks, finite state transducers,
recursive transition networks and augmented transition networks.

Finite State Transition Networks
There are two broad groups of finite state transition networks (FSTN), deterministic and
non-deterministic. In a deterministic network we are never in any doubt over which arc
to take, in a non-deterministic network we can receive two percepts directing us across

 5

different arcs. In this implementation we avoid issues of non-determinism by associating
an ordering and strength to each percept, we can then always take the arc dictated by
the strongest percept, or where there is a tie, the first in order.

A FSTN can be said to have a limited memory because it knows its own state. For
example if the percept Hungry is registered it may trigger a transition to HungryState; in
this new state the agent might have a different set of transitions, all relating to getting
food. It could be said to have remembered that it was hungry.

Finite State Transducers
The finite state transducer (FST) is a subclass of FSTN. Each transition of the FSTN is
driven by a percept, however it is also possible to use those transitions to drive the
agent�s actions by attaching an action alongside the percept. The idea of this being a
transducer comes from the application of this algorithm in linguistics where a word might
be read in and a fact written out by the same transition.

A

B

C

D

1

2

3

3

1

a
b

d
State

Percept

Transition

Action

Figure 2: Finite State Transducer
In our implementation we are able to attach an action to a transition alongside a percept,
crossing that arc will instigate the action. Figure 2 shows the simple FSTN in Figure 1
converted to a FST: Reaching state D via percept 1,3 executes actions a, b and via
percept 2 executes action d.

Recursive Transition Networks
The recursive transition network (RTN) is an extension of the FST that is able to push its
current state onto a stack and jump to a new state machine. If it crosses a specific exit
transition from a state machine then it pops the previous state from the stack and returns
to it. As the new state may be a fresh copy of the current state machine, this allows
recursive state changes. In linguistics, the recursive machine is able to describe (or
parse) a larger range of languages.

The memory of the RTN is extended from the state memory of the FSTN to a higher
order, remembering the stack of all successive states.

Augmented Transition Networks
By supplying the state machine with a set of registers we are able to extend the RTN to
the more descriptive augmented transition network (ATN). A set of registers is
maintained which are accessible from any state, and rather than limited to recording
previous states only as in the RTN, these registers may hold arbitrary data.

In our implementation, the registers generally hold pointers to objects within the agent�s
environment, which can be queried by the percepts and actions. For example an action
might select another agent from the environment and put it into the Target register.
Consequently a percept measuring the distance to the agent in the Target register would
then change.

 6

The ATN extends further the range of languages that can be parsed or generated by the
network as was demonstrated to great effect in the ELIZA program [Weizenbaum 1965].

A

B

C

D

1

2

3

3

1

a
b

d
State

Percept

Transition

Action

i
ii
iii

Register

Figure 3: Augmented Transition Network
Extending the FST of Figure 2 the ATN represented in Figure 3 shows how the action a
modifies the register ii in the transition from A to B, which is in turn read by percept 3 in
the transition from state B to D.

Implementation
Agents are controlled by an ATN that is driven by percepts and drives actions. Actions
are presented in a hierarchical format allowing compound actions to be built up out of a
base set of axioms. Percepts measure the environment and may also be compounded
together using functions such as min and max.

The State Machine
We have implemented an ATN architecture for control of individual agents within the
world. Each agent is a container for the GPlanner class containing the current state, and
drives state transitions reading percepts from GSensor, and actions written to GPlan.
Figure 4 shows the GPlanner class contained within the GAgentObject class that
describes all intelligent agents in the game world.

The state machine is described within the GSettingState class, contained in the static
class GSettingsCollection, a generic container into which data files are read. Each state
has a set of three arrays of integers, each with a number of members corresponding to
the number of arcs leaving that state. The three integer arrays correspond to the ID of
the state to which the transition leads, the percept that drives the transition and the
action that is initiated by that transition.

There is a separate state network for each type of agent within the world, and each is
held in a static class rather than within the planner. This is because all agents of a given
type are able to use the same instance of the appropriate network, as it contains no
agent specific information.

The planner is a container for the GPlan class, which holds each of the registers and the
hierarchy of actions. There are Approximately twenty registers for each agent and as
these are specific to the agent they must be contained within the planner. Examples of
the registers are included in Figure 4 e.g. pTarget is a pointer to the agent�s current
target.

In any given state, there will be a set of transitions to other states, each with a percept
attached to it. Percepts are contained within the static GSensor class, to which calls are
made through the TestPercept() function. By passing a reference to the agent�s GPlan to

 7

the function (and hence all of its registers) we are able to use a single set of percepts
rather than one for each agent.

Actions may also be associated with a state transition and because these take the form
of an n-ary tree, the plan needs only to point to the highest member. If a percept causes
a state transition that dictates an action, then that action will replace the current action.

GStateSetting

GSensor

TestPercep t()

GPercept
iObserved []
iNormalised []

Resolve ()

1..*1..*
GPlanner

Plan : GPlan
pStateSetting : GSettingState
iState : Integer
iActivityThreshold : Integer

ChangeAction()
ChangeState()
Resolve()
Act()

11

GAgentObject
Planne r : GP la nner

11

GP la n
pAgent : GAgentObject
p Cra te : GCrate
pTarget : GGameObject
p To y : GToy
p Actio n : GAction

Resolve()
Execute()

11

Figure 4: Inheritance of the Planner Class

Percepts
There are three types of percept all contained within the static GSensor class:

Simple percepts normalise an observed value and return an integer between
zero and 100

Compound percepts operate a function across a set of component percepts
(simple, compound or team)

Team percepts operate a function on a single percept (simple or compound)
measured for each team member

Figure 5 shows the logical structure of the GSensor class containing the percept
hierarchy. The GCompoundPercept class can contain one (though generally two) or
more percepts, the GTeamPercept class contain just one percept. Note that the
containment described for the compound and team percepts is by an integer reference to
the ID number of the percept rather than a memory pointer.

 8

GPerceptAmmo

GP erceptCompoundMin

GP ercep tCom po undMean

GPerceptCompoundMax GPerceptTeamMean

GP ercep tTe ea mM in

GPerceptTeamM ax

GPe rce ptDista nceToCrate

GP ercep tWe ap onID

GSensor

TestPercept()

GPerceptComp ound
iPercep t[]

GPerceptTeam
iPercept

GPercept
iObserved[]
iNormalised[]

Resolve()

1..*1..*

1..*1..* 11

Figure 5: GSensor containment of the GPercept class

Simple Percepts
The basic GPercept class reads an observable value, either from the environment
external to the agent or from its internal registers, and normalises that value between 0
and 100 according to an associated graph. For example Figure 6 shows how the
percept LowAmmo reads the amount of ammunition carried by the agent and normalises
to maximise the return value when the agent has very low ammo giving a sigmoid
response, with anything higher than 100 returning zero.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160
Observed

Figure 6: The LowAmmo percept normalisation curve

 9

Compound Percepts
The GPercept class has been extended to allow compound operators to act on sets of
percepts. There are two types; the GCompoundPercept class operates a function
across the normalised results of a set of percepts (compound, simple or team). The
GTeamPercept class operates a function across the normalised result of a percept
(simple or compound) for a set of agents.

There are currently four GCompoundPercept functions operating on the normalised
scores of the component percepts. The first three operate on two or more components,
the GreaterThan operator acts on two:

GCompoundMin The lowest of the normalised component percept scores
GCompoundMax The highest of the normalised component percept scores
GCompoundMean Average of the normalised component percept scores
GCompoundGreaterThan Difference between the first and second component percept

score if greater than zero, otherwise zero

The compound percepts allow us to create complex and intelligent responses to stimuli.
For example, in an explore state, we wish to limit the agent�s inquisitiveness by its
distance from the base, however that distance can be higher if the agent has a good
weapon. The Adventurous percept could measure a GCompoundMean operator over the
percepts NearToBase, HighArmed and HighAmmo. The agent would become more
adventurous with a good weapon and lots of ammunition.

Team Percepts
There are three GTeamPercept operators corresponding to the compound operators (the
greater than operation is binary and would fail on teams of more than two agents):

GTeamMin The lowest of the normalised team percept scores
GTeamMax The highest of the normalised team percept scores
GTeamMean Average of the normalised team percept scores

The GTeamPercept class allows us to make state transitions dependent on percepts
measured across the team. Because agents are able to influence the states of other
team members, we are able to drive team strategies from the state machine. For
example the percept TeamLookingForTrouble could use the GTeamMin operator on the
compound percept Adventurous, to decide whether the to initiate an Assault strategy.

Actions
Actions are divided into two types, compound and axiomatic. The axiomatic actions are
described in code and they can be referenced by their ID number. The compound
actions are data driven, and may reference other compound actions but ultimately
resolve down to an ordered list of axioms. The base class for an action is GTreeNode
shown in Figure 7. Note that the reference is bi-directional, the parent can refer to the
child, the previous to the next and vice-versa. In practice, multiple actions are linked
together to form a tree with one action at the top (for which pNext and pPrevious are
both NULL) and an increasing number of actions at each child level.

 10

GTree No de
pNext : GTreeNode
pPrevious : GTreeNode
p Pa re nt : GTree No de
p Child : GTree No de

0..10..1

+Parent

0..1

+Child

0..1

0..1

0..1

+Previous
0..1

+Next
0..1

GA ctionCrate

GActionGo

RoutePlan()
WalkPlan()

GA ctionW alk

GActionShoot

GActionBuddy

GAction
bComplete : Boolean
bPrimitive : Boolean
bResolvable : Boolean
iAction : Integer
pPlan : GPlan
pAction : GSettingAction

ResolveAction()
ExecuteAction()
TestComplete()
TestPossible()
Resolve()
Execute()

Figure 7: The GAction class structure
There is currently a base set of approximately 160 axiomatic actions, and 1000
compound actions, which are built from compound and axiomatic actions. This database
of actions provides us with a set of partial plans, which opens up the possibility of using a
partial planner to generate complete plans [Sacerdoti 1974].

The GAction class resolves in to a collection of descendants that are classified loosely
by function. Figure 7 gives a few examples of the hierarchy.

Human-controlled agents are controlled via an interface device such as a joystick or
joypad (the effector), autonomous agents are controlled by a virtual equivalent, and
effective actions generate virtual key-presses on that device. Actions are called through
one of two functions dependent on whether the bResolvable flag is set. Both the
Resolve() and Execute() functions will test that the preconditions are met with
TestPossible() and that the post-conditions are not yet satisfied with TestComplete().

Provided that the conditions are met, Resolve() will then either call the virtual function
ResolveAction() for the few primitive resolvable actions (such as route planning) or the
ResolveCompound() function to resolve an action into its component actions as
described by the partial plan database. Similarly the Execute() function will call the
virtual ExecuteAction() function for the axiomatic action class if it can be resolved no
further.

Actions are sequential and are decomposed to components from top to bottom, left to
right, depth first to the first axiom, which is then executed. When its post-conditions are
met Execute() returns true, it is marked complete and the next axiom is searched for.

 11

There are four kinds of axiomatic action:

Effectors move the agent within its domain
Register operators manipulate values within the GPlan registers
Communicators pass messages to other agents
State changers change the agent�s state on execution

Effectors
This group of actions translates an axiomatic action into effective key-presses via the
virtual controller. These include those actions relating to movement, attacking, and
manipulating crates.

There is a small group of actions relating to route planning which are resolved within the
code, ultimately down to the effective directional key-presses, rather than as described
by the action database. The route-planning algorithm uses a partial planner to navigate
around static obstacles and terrain features within the game, and demonstrates the
possibility of adopting a partial planner in all resolution steps.

In order to accommodate route planning within the action architecture we have a set of
specialised functions called from ResolveAction() within the GActionGo class:

1. The action GoTo directs the agent to a position on the map and is set as resolvable.
2. Calls to GActionGoTo::ResolveAction() are passed to the RoutePlan() function.
3. RoutePlan() draws a vector between the agents position and the goal location and

test for collision with any objects.
4. If the vector collides with an object then the agent perceives the leftmost and

rightmost vertices of the obstacle as its limits.
5. One of the two limit vertices is selected as a new intermediate goal and the

GActionGoTo action resolves into two GActionGoTo sub-actions that are again
resolved.

6. If no object intercedes between agent and goal then the GActionGoTo action
resolves into a GActionWalk action.

7. GActionWalk actions resolve to relevant key-presses.

Register Operators
Registers are accessed by the percepts to alter the agent�s behaviour. The register
operators are able to modify the register contents. For example the axiom
SelectNearestCrate searches the immediate environment for a crate which is written to
the crate register.

Communicators
Whilst the GTeamPercept class of percepts allows a degree of indirect communication,
these actions offer explicit communication between team members. In order to achieve
team co-operation agents are able to communicate with each other by issuing orders to
team members. Orders pass from the sender to a communication layer and from there
after the addition of an amount of noise proportional to the range, to the target.

The order comprises an action identifier, a priority and a reference to the sender. The
receiving agent can decide whether to obey the order based on the action, its priority, its
sender and the agent�s current activity threshold. Actions can be channelled to a specific
team member or to the entire team.

State Changers
When a state change action is executed, the agent will change its current state to the
state dictated by the action regardless of whether a state transition exists. These actions
are not generally included in any compound actions but are communicated from one
agent to another as orders.

 12

The communication and state change axioms allow us to build strategies involving
several agents in a team. For example one agent can issue orders to all the other team
members to go to a point and enter an ambush state where they will do nothing until a
target agent comes into range. The agent issuing orders can then instigate a feint attack
and hope to draw enemy agents into the ambush.

Application
We include some examples of the pattern implementations from game.

Actions
Most selection actions, associated with the retrieval of desired information such as agent
ID, are axiomatic and feature heavily throughout the state machine. They are used to
draw the agent�s attention toward a specific target.

For example, the compound action GoAttackTarget concatenates the actions
MoveWithinRangeOfTarget, FaceTarget and ShootTarget and is appended to the action
SelectNearestEnemy to create GoAttackNearestEnemy as seen in Figure 8.

GoAttackTarget

MoveWithinRangeOfTarget FaceTarget ShootTarget

SelectNearestEnemy

GoAttackNearestEnemy

Figure 8: Decomposition of the action GoAttackNearestEnemy
The axiomatic and (primitive resolvable) component actions are:

SelectNearestEnemy Select a target and store the agent ID
MoveWithinRangeOfTarget Move within weapon range of the target
FaceTarget Face the target
ShootTarget Attack the target

Strategy actions pass orders to all team members to act in a coherent manner. For
example the GPileIn strategy action selects an enemy target and tells all agents to copy
this target into their register and then go to the PileIn state, from which the agents
emerge only when that agent is destroyed:

SelectNearestEnemy Select a target and store the agent ID
TellTeamSelectMyTarget Instruct all agents to copy the target from my target

register to theirs
TellAllChangeStatePileIn Tell agents to jump to the PileIn state

Percepts
A frequently used axiomatic percept is EnemyNear, based on the distance between the
agent calling the function and the nearest enemy agent. EnemyNear obviously returns a
high value when the enemy is near and a low or zero value beyond an arbitrary distance.

A simple yet powerful compound percept uses the CompoundMin operator to combine
EnemyNear and the percept NoTarget (which returns a maximum when there is no
target in the register). Effectively NoTarget acts as a switch on EnemyNear, if we have a
target, then we�re not interested in the enemy�s proximity.

 13

Team percepts perform the same operations as compound percepts, using the values of
all the agents in a team, and become useful when considering the team as a unit. The
building and resource management cycles are affected by the team�s current attributes.
Ideally we want all team members to have a similarly powerful weapon, or at least that
every agent has some kind of weapon. Once sufficient crates have been stacked to
build a weapon, the building agent considers whether to open the crates and collect the
weapon or add more crates and upgrade it.

A decision to upgrade a current weapon to a stronger weapon is determined by the
weakest weapon possessed by all team members. The percept used is
TeamMin(WellArmed). Essentially, If the weapon in the currently completed crate
configuration is �better� than that of the weakest member in the team, then the upgrade
request is disallowed, the crate is opened and the pad made available, giving weakest
member access to request an upgrade.

States
In order to produce behavioural quirks in the attempt to make interesting characters,
certain basic states (classed as instinctive) occasionally test for rare circumstances that
lead to particular states where �normal� behaviour doesn�t apply. Agents will remain in
this state (or state cycle involving several states) until exit conditions are met.

In the case of the state Hero, the agent is required to attack all he can see. Using the
percept CompoundMin(NoTargetEnemyNear) mentioned above, if he has a target then
NoTarget returns a minimum and consequently EnemyNear is disabled (i.e. we already
have a target � the enemy�s distance to us is unimportant). While it has a target it will
continuously attack, however, if the agent destroys the target, its target register is
cleared (NoTarget returns a maximum) so now any enemies nearby can be detected and
selected as new targets if the EnemyNear percept is strong enough. The exit condition in
this state occurs when there are no further enemies nearby, and the agent returns to the
default state.

Editor
The axiomatic actions and percepts are used to construct a state table using a purpose
built editor. The editor provides a graphical representation of the state machine, the
percept normalisation graph and the partial plan action hierarchy. The data is exported
in the simple text format required by the game allowing AI editors to simply generate and
test new architectures.

Performance
Whilst we are able to make objective measures of performance on the PlayStation these
only acquire meaning when compared to the performance of other similar algorithms. It
has not been possible for us to make this comparison due to the inaccessibility of
commercial AI implementations within game code, and so we are reduced in the main to
subjective commentary.

We are however, able to compare the performance of the algorithm against the
requirements of the game, and show that it has satisfied them entirely. The comparison
breaks down into three areas, processing speed, apparent intelligence and access to the
game designers.

For speed, the principal concern is the impact of the AI processing time on the screen
drawing time (frame rate). We have measured the mean processing time using the
Playstation performance analyser and presented the results in Table 1.

The timings are measured in raster lines, there are 256 raster lines per frame with the
game running at 50 frames per second at maximum speed. The measurements are
taken for seven agents, split between times for graphics code � the time to write the
images to screen and game code - the time to manipulate the game objects without
drawing them to screen. The AI code results show the time taken by one agent to act

 14

within the environment, with 256 raster lines taking 0.02 seconds. This means that each
agent takes an average of 3.125 milliseconds or 1.38% of the processing time.

The peak values for agent processing time represent complex route planning actions and
are infrequent. Whilst it is clear that the game could not sustain seven agents running at
this peak performance, it is known that these peaks are very short and unlikely to
coincide with significant frequency.

Table 1: Game timings in raster lines for seven agents

 Graphics code
per frame

Game code
per frame

AI code per
frame

Total code per
frame

AI code per
agent

Minimum 136 41 7 184 1
Maximum 261 204 98 563 74

Mean 171 91 28 290 4

The agent�s intelligence is best described in their ability to win the game, and this is
dependent to a large part on the foresight of the game designer editing the transition
network. At the current development stage agents are able to play against other
autonomous agents and human opponents in an apparently intelligent manner and
consistently win.

For the game designers, the ability to describe an agent�s intelligence directly through
the manipulation of a database is unprecedented. Modifications can be implemented and
applied to agent behaviour within five minutes and this along with extensive state
machine debugging tools makes for a very rapid development cycle.

Conclusions
Implementation of the model onto the PlayStation architecture has generated few
problems, which have been easily overcome. Once the axiomatic actions and percepts
are provided, the nature of the ATN architecture means that agent behaviours can be
rapidly prototyped, tested and implemented onto the Playstation platform.

It should be stressed that the agents act from an embodied position within the game
world, at no time do the percepts measure anything that the player could not measure.
Also the agents� actions are effected through a virtual controller, identical to the players
and are similarly limited. Whilst this is the norm for mobile agents, it is novel for agents
within a game environment.

The variety and appropriateness of the agents� behaviour coupled with the speed of
reaction contributes to player�s perception of playing against an intelligent and
unpredictable opponent. Added to this, the co-operative nature of the strategic actions
lends a sense of underlying goal-directed behaviour. These aspects are critical in lending
an immersive quality to the game.

Whilst the performance of the implementation can only be measured subjectively, it has
consistently surpassed our expectations and we believe it competes strongly with others
in the field.

Acknowledgements
This work was made possible through the efforts of the Buddies Team who are:

Tom Beaumont
Peter Hodges
Dave Sullivan
Tim Dann
James Baker
Miguel Melo
Alex Whittaker
Neil Rowlands

Kevin Pim
Nicola Cavalla
Tiziano Riolfo
Analou Marsh
Richard Holdsworth
Dominic Clark
Noel Flores-Watson
Chris Petts

Dan Leslie
Antonio Miscellaneo
Ainsley Fernando
Graem Monk
Steve Oldacre
Kym Seligman

 15

References
Brooks, R.A. (1991) Intelligence without representation. Artificial Intelligence 47 139-159

Fikes, R.E. and Nilsson, N.J. (1971) STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2 189-208

Sacerdoti, E.D. (1974) Planning in a hierarchy of abstraction spaces, Artificial
Intelligence 5(2) 115-135

Walter, G. (1950) An imitation of life. Scientific American 182 42-45

Weizenbaum, J. (1965) ELIZA - a computer program for the study of natural language
communication between man and machine. CACM 9(1) 36-45

