
Love thine Agent: Implementing believable agents using
augmented transition networks

Tiziano Riolfo and Alex Whittaker

Psygnosis Ltd.
Tiz.Riolfo@psygnosis.co.uk
http://www.psygnosis.com/

Abstract
We present some observations and lessons learned in implementing agent behaviour through
an Augmented Transition Network (ATN) in the Playstation console game Team Buddies
currently under development in the Psygnosis Ltd. Camden Studio.

1 Introduction
The Emotor engine was born out of the need for a versatile system to control multiple agents
on a games console. The CPU on the Sony Playstation runs at 33MHz without floating point
operations and with 2MB of main memory accessible through a 1KB cache. We are able to
drive over twenty autonomous agents within the processor time allocated to AI control
(approximately 0.01 second) in a single frame (screen refresh).

Emotor is presented as a C++ library compiled for a Microsoft Windows or Playstation
operating system. It provides the game programmer with the means to associate an agent with
a brain object that is a base class for an ATN object. The library is accompanied with a
graphical editor that is able to create and manipulate the database that is read by the ATN and
controls the agent’s behaviour.

From the very beginning, the system has been ideally suited to providing an AI framework for
a non-programming designer to take responsibility for coding and tweaking agent behaviour
away from the programmer. Moreover, essential game features such as triggering sound
effects, animation and changes in iconic information are all controlled by the agent through its
state machine.

The game also employs a primitive agent communication language; organised team goals can
be achieved through a system of orders issued between agents that override current activity
and submit a new plan. This was very easily and effectively achieved with Emotor.

2 Problem Domain
The ultimate goal for a computer game AI designer is to have the player accept an agent as a
friend, compatriot or enemy rather than merely an obstacle to success. To help the suspension
of disbelief, the designer can give agents ‘character’ so that not only are they reactive to the
user’s avatar (the one agent entirely controlled by the player), but they also become
recognisable and hopefully likeable for their strengths and weaknesses throughout their
relationship with the user. This is the goal we have set for this product and this system.

The discussion presented here is informed by the development of an arcade game for the Sony
Playstation console: Team Buddies. This is a single or multi-player game that puts up to four

teams of one to four agents into a battle arena where one team must be victorious using an
arsenal of weapons and vehicles to eliminate all others.

The most important aspect to Team Buddies is the collection and stacking of the building
resource (crates). When crates are placed on the team’s stacking pad, they combine to produce
larger crates – when crates are opened they release a new weapon, vehicle or agent. Larger
stacks reveal better or more potent rewards. In later levels different types of agent with new
special abilities, physical attributes and behaviour are revealed.

Teams can be entirely AI driven as independent opponents and will fight amongst themselves
as well as against ‘player’ teams. The player’s team can be made to co-operate with the
player’s avatar by using the Playstation controller to communicate orders to them.

The player controls their avatar using the directional pad for movement and the buttons for
jumping, picking up and putting down crates, shooting, etc. The other agents on the player’s
team can be swapped to at any time i.e. the player can ‘possess’ any of the host agents on
their team relinquishing control of the previous agent which becomes autonomous. More
effectively, team members can be ordered to perform a variety of tasks via a context-sensitive
system that allows the player to highlight any object or agent in sight and expect their team
members to interpret the player’s intentions.

 The orders issued to team members instruct them to adopt strategies outside of their normal
behaviour - the autonomous teams use these as well. Without the addition of strategy
selection, computer controlled teams would build weapons and vehicles and defend
themselves but would continue to a stalemate rather than win the game. By allowing them to
select from various aggressive and defensive strategies they are able to present a much more
dynamic and enjoyable gaming experience.

3 Methodology
The programmer is required to provide the game engine with three types of C++ object that
allow the agent to interact with its environment: actions, percepts and conditions. Each of
these is encapsulated within a class of its own and cross-referenced to a unique identifier in
the behavioural database.

3.1 State Transitions

The ATN allows the designer to describe an agent’s behaviour as essentially a network of
nodes; each node represents the state of the agent - where a state is the definition of the
agent’s priorities and each priority is defined by a percept. Percepts measure a feature of the
environment and return a normalised value representing the strength of that feature.

The normalised percepts allow a comparison between different priorities; the strongest
percept drives a state change that may have an action associated with it. For example if an
agent is considered ‘idle’ (i.e. testing only its most basic priorities) a transition could occur to
an ‘alerted’ state if an aggressor has invaded its personal space. A percept may also trigger a
recursive transition to the same state usually driving an action that impacts on the same
percept as a negative feedback.

An agent possesses many states that can handle numerous issues; however if the problem is
complex enough a number of associated states will be necessary to tackle all the facets and
perform all relevant tests.

3.2 Percepts, Interrupts and Compound variations

Percepts are described by graphs where the variable quantity (e.g. distance, time) is on the X-
axis and the normalised strength is represented on the Y-axis. The shape of a percept graph is
crucial to the ‘believability’ of the agent, as the best agents are those that react with
apparently analogue responses. An agent’s ‘character’ originates from its variety of response
to clearly defined stimuli.

Percepts can be combined together as compound percepts using operators such as MIN (the
minimum value of two or more percepts) and MAX (the maximum) logically equivalent to
the conjunction and disjunction operators. This is useful because more relevant percepts can
be brought together to make a more informed decision to change state and/or undertake a new
plan. More interestingly, a simple measure such as proximity to an opposing agent can be
combined with a superficially unrelated measure such as low health to give us a complex
emotional percept such as fear. Layering these more emotive ‘life-like’ responses provides us
with a less predictable and more believable agent.

Another useful function set measures a percept across an entire team and the normalised value
is the result of the maximum or minimum value of each team member’s observed quantity.
For example, if you wanted to test whether every agent has a weapon, using the minimum
value across the team for a percept measuring weapon strength will return a value reflecting
the least armed team member.

3.3 Thresholds and interrupts

In order to keep the agent’s attention focussed on the goal that it is currently pursuing, an
activity threshold is set whenever the agent begins executing a new action. This threshold
provides an upper limit that percepts need to exceed before they can trigger a second state
change (and consequent change to the action being taken). When the agent completes its
action plan, this threshold drops until the first percept to exceed it drives a new action
selection.

The percept activity responds in the range 0 to 100, the default threshold is set to 75 at the
onset of an action execution and drops to 25 at its completion. Percepts that can return a value
of 75 or greater are termed interrupts, as they are able to cause an agent to stop whatever
action it is executing and respond to the stimulus. Interrupts are critical to describing
responsive intelligent behaviour.

3.4 Actions and Registers

Actions exist and are triggered along the transition arc from node to node. They have a variety
of uses that are specific to the type of game using the Emotor library. Most actions are used to
tell agents to go to a particular location or store information – they embody the response to a
stimulus. Actions are intrinsically linked with registers, as it is the actions that allow
information to be stored into the registers from which percepts can subsequently read.

Registers offer temporary storage allowing an agent to make reference to objects in its
environment for later action. The temporary storage extends the representative power from
that of a simple transition network to an ATN. In Team Buddies we use a stack register to
hold way-points in a route-plan, and normal registers to hold other states and pointers to other
agents, vehicles, toys and buildings.

Actions can either be primitive or compound. Primitives tend to be just one simple
instruction, such as ‘commit this information to memory’ (into a named register) or ‘travel to

the co-ordinates stored in a named register’. Compound actions always contain more than one
action within. It’s perfectly possible to have compound actions within compound actions,
however they all break down to a string of primitives that are executed sequentially.

For example, the frequently used compound action in Team Buddies named
GO_ATTACK_TARGET breaks down to three primitive actions:

1. GO_WITHIN_RANGE_OF_TARGET causes the agent to move within firing
distance of its chosen target

2. FACE_TARGET rotates the agent to face the target

3. SHOOT_TARGET fires the equipped weapon

All three actions refer to a ‘target’ the assumption is that an object in the game environment
has been selected and stored in the appropriate ‘target’ register.

A compound action is not executed instantly, component actions are executed sequentially
over consecutive screen refreshes (40 milliseconds), so that at any given time actions may be
being executed (carried over) from the last state transition.

3.5 Pre-and Post-conditions

As some actions are continuous over several frames we need to be able to test the
environment in order to determine when they are complete. A database of conditions is built,
each one cross-referenced by unique identifier to the code, and these can be attached as a
post-condition to an action. For example the condition AT_TARGET would be supplied as
the post-condition to GO_WITHIN_RANGE_OF_TARGET, the agent would continuously
attempt to execute the action over many frames until the post-condition was true.

Similarly, we need to test that the preconditions for executing an action are met, this can
avoid the agent attempting to execute an action that is patently futile. For example the
precondition for the action GO_WITHIN_RANGE_OF_TARGET would be to test that the
target register referenced a valid target: TARGET_REGISTER_NOT_NULL.

4 Strategic Behaviour
4.1 Triggering Strategies – AI and Player control

Strategies represent the need for activity other than the reactive behaviour described by the
core state machine. Strategies have been organised as detached states that are only entered
when conditions are favourable. On the computer-controlled team, this may depend on one
agent ordering team members to change from whatever state they are currently in to a strategy
state.

For teams controlled by a player the autonomous members will not execute a strategy; rather
it is incumbent on the player to determine when a strategy will be effective. Pressing or
holding the appropriate button on the Playstation controller orders a single agent or the entire
team to adopt a strategy selected according to the focus of the avatar’s attention.

4.2 Single and Team Strategies

The strategies in Team Buddies divide into two distinct groups, ‘single’ and ‘team’. The
approach is quite different as single types are triggered by specific observable values (e.g.
vehicle available nearby might trigger the joy-rider strategy) that apply to only one agent. A

team strategy is a more complex proposition, as a decision has to be made on a team basis
using percepts measured across the team.

4.3 Affecting strategic decision-making

The system adopted in Team Buddies uses four percepts to modify the probability of a
particular strategy being performed. These percepts modify the ‘general’ behaviour required
for a game level, and represent the amount of aggressiveness, defensiveness, hindrance and
stupidity expressed by all enemy agents. For enjoyable gameplay purposes, at the beginning
of the game, levels of defensiveness and stupidity modifiers are high, and the reverse is true
towards the end. These percepts modify the triggering conditions for the appropriate strategy:
an aggressive strategy that throws caution to the wind will typically be driven by the percepts
for aggressiveness and stupidity.

5 Lessons learned
The Team Buddies game is currently in the beta release phase, and we are now in a position to
point out some of the pitfalls inherent in describing an agent using an ATN.

5.1 Data Management

Whilst complex behaviours can be emergent from a simple ATN, in general more intelligent,
responsive agents require more complex ATNs occupying more memory. In Team Buddies
the behavioural database occupies approximately 70KB of the 950KB of memory available
for game data. This competes for space with the game world description, including
animations, speech, model descriptions etc.

We have found that more correct and concise use of the grammar leads to more robust
behaviours described in fewer states. Assumptions made in earlier states allow superfluous
testing to be removed from subsequent transitions, making decisions faster and reducing the
amount of environment sampling. For example if we enter a state as a reaction to being shot
then we can assume that the aggressor is within weapon range and do not need to test it.

5.2 Limitations imposed by non-recursion

Despite there being many collections of states that perform very different tasks, there are
some subsets within them that are repeated - often they are identical. In a combat-based game
like Team Buddies attacking an aggressor is very much the same procedure which implies the
same set of states. These sets of states are repeated because they are an intrinsic part of very
different strategies and cannot be shared.

Due to the restrictive nature of the Playstation platform we have been obliged to develop an
extension of a finite state transition network (FSTN). If we were able to store the unique
identifier for a strategy into a stack register, we could model a recursive transition network
(RTN). The RTN has a higher degree of notational adequacy, and is able to model a
functionally equivalent FSTN with fewer states. We have implemented a single state register
(rather than a stack) allowing a single level of recursion which has provided considerable
improvements in clarity and memory use.

5.3 Simplification

Effective management of any state machine is important to maintain the designer’s clarity of
vision. Each state should deal with a set of conditions that give the state a specific purpose.
Often a situation requires a collection of states to deal with a particular problem, so each sub-

state is used to tackle a facet of the problem. This is generally the case where a particular
stimulus is intended to cause a complex or unpredictable response.

For some bonus levels we have expected a considerably different behaviour from an agent,
which would never be needed outside of that domain. Here we have tailored specific state
machines focused on that level alone.

5.4 Interrupts

Percepts that return values at the maximum threshold level, referred to as interrupts due to the
immediacy of their effect, present a unique problem because of their ability to stop what an
agent is doing and intercede with a state change and new action. Problems occur where the
state changes describe a cyclic component to the FSTN graph, where a state loops to itself or
between states in a short loop. The actions that are driven by the interrupt are themselves
interrupted by the same percept before they can complete. This is most notable when a string
of actions is being executed, there is no guarantee that all actions will be completed if the
destination state contains a potentially interrupting percept. The best solution is to use more
states to ensure that actions do complete, however this adversely affects the size of the state
machine. Another solution has been to extend the ATN model, allowing actions to set their
own threshold level when executing, making themselves effectively non-interruptible,
especially useful in actions affecting the registers.

5.5 Cyclic behaviours

Agents occasionally fail an action such as movement to a location for a variety of reasons.
Sometimes the rules for collision detection between cylinders and rectangles become
confused and the agent is caught in an inextricable loop. However, the state machine is able to
assist by simply monitoring the time taken to complete an action and the number of failures,
interrupting when a threshold is exceeded, a simple escape behaviour such as leaping to avoid
an obstacle is then executed.

6 Summary
We have used an ATN to describe the behaviours of a large number of reactive agents in real
time, on a platform that places severe constraints on processor and memory resource. Agent
behaviour has been carefully crafted through a graphical editor and the limitations and
advantages of the ATN model in agent behaviour description have been explored and
presented. A data-driven model for agent behaviour is vital for developing complex agent
behaviours in the development time scales available for computer games. Reactive behaviour
is vital for real-time implementations within the constraints of a games console development
platform.

