Defining the role of open source software
in research reproducibility

Lorena A. Barba, the George Washington University, Washington D.C.

November 2021

Abstract

Reproducibility is inseparable from transparency, as sharing data, code and computational
environment is a pre-requisite for being able to retrace the steps of producing the research
results. Others have made the case that this artifact sharing should adopt appropriate licens-
ing schemes that permit reuse, modification and redistribution. I make a new proposal for
the role of open source software, stemming from the lessons it teaches about distributed col-
laboration and a commitment-based culture. Reviewing the defining features of open source
software (licensing, development, communities), I look for explanation of its success from the
perspectives of connectivism—a learning theory for the digital age—and the language-action
framework of Winograd and Flores. I contend that reproducibility is-abeut-engenders trust,
which we routinely build in community via conversations, and the practices of open source
software is-a—route-help us to learn how to be more effective learning (discovering) together,

contributing to the same goal.

What is reproducibility, and why does it mattersmatter?

Discussions in the scholarly community about reproducibility have intensified over the past decade,
with a never-ending string of workshops, symposia, dedicated journal special issues like this one,
and even Congressionally mandated studies conducted by the National Academies. Sister-The
sister magazine of the IEEE Computer Society, Computing in Science and Engineering, ran special
issues on this theme in Jan/Feb 2009 and in Jul/Aug 2012. The guest editors of the latter high-
lighted that the extensive use of computation in the scientific endeavor has meaningfully changed
the norms and standards of science-making. Computing is now an everyday activity for every
scientist, in some form or another, from running simple statistics on empirical data, to running
massive simulations on leadership computing facilities. The definitive, policy informing report
of the National Academies of Sciences, Engineering, and Medicine (2019) thus sharply focused
its definition of reproducibility: “obtaining consistent computational results using the same input
data, computational steps, methods, and code, and conditions of analysis.” This definition indeli-
bly links reproducibility with transparency, via the requirement that data and code associated with
a research study be made available to other researchers. It does not imply, however, that the code
should be open source, just available—this could possibly be under special permissions granted for
the purpose of inspecting or reproducing the results. Yet, a large contingent of researchers who
identify as members of the reproducible-research movement (including myself) vigorously advo-
cate for open source software. In this article, I aim to elucidate the role of open source software in
research reproducibility.

Why do we care about research reproducibility? The products of scientific knowledge are all



Open source software in research reproducibility

around us, in the technology we use, how we protect from dangers, heal and live longer, enter-
tain, communicate and travel, grow economies and build a better world. All this achievement is
cumulative and hinges on trust-a fabric of trust in the scientific process (we can see this clearly
in cases of trust breakdown that have undermined science, e.g., the anti-vaccine movement and
climate-change denialism). We use computer simulations, statistical analyses, and data-driven
models to create scientific knowledge, and thus it is pertinent to ask when can we say that we
have trustworthy evidence to justify the claimed findings. If we use simulations, for example,
how do we show evidence that the results represent reliable data about the real world? How do
we come to trust the computational results? It’s interesting to note that questions like these were
raised a few decades ago about experiments. You may think it is rather obvious that we should
believe the results obtained from an experiment that is directly observable, yet in many cases (e.g.,
in particle physics) experiments are far from indisputable. Franklin (1989) wrote about the neglect
of experimental physics from the treatment of philosophers of science, and discussed the many
strategies that experimental scientists use to provide grounds for rational belief in experimental
results. For example: confidence in an instrument increases if we can use it to get results that
are expected in a known situation. Or we gain confidence in an experimental result if it can be
replicated with a different instrument or apparatus.

In the direct detection of gravitational waves, arguably the greatest scientific breakthrough of our
time, the LIGO collaboration spent months investigating every possible explanation for the sig-
nal captured by the apparatus before making their public announcement. If they told the world
that the chirp was caused by two black holes merging a billion years ago, they had to be certain!
To begin with, the collaboration used two facilities with the same apparatus, each costing hun-
dreds of millions of dollars. The team’s activities even included so-called blind injections: when
artificial signals are sent to various groups of researchers to make them analyze the data and ex-
ercise the scientific workflow, arriving at the conclusion that the signals are not from gravitational
waves. Every member of the collaboration is committed to the relentless quest for unimpeachable
evidence. Notably, in their pursuance of trust, the collaboration founded the Gravitational Wave
Open Science Center,’ hosting data, software, documents, and web tools produced by the effort.
The data and the multiple pieces of software are released under standard public licenses, usually
Creative Commons Attribution (CC-BY4.0) for data and MIT or GPL licenses for code. And re-
cently, Brown et al. (2021) used the open data and code to reproduce the computational analysis
that established the statistical significance of the detection. The authors also described several
challenges they faced in the reproduction exercise, despite the open availability of the original data
and code. Among other hurdles, the original publication had not documented the version of the
code used in the analysis, and the script used to make the final figure in the paper was not archived
and shared. To finally succeed in reproducing the published result, the collaboration of one of the
authors of the original paper, who had to resort to personal files, was needed. Even the most
meticulous research team, with a broad commitment to open science, had missed something!

Open-source software in research

Researchers have been involved since the genesis of open-source software (OSS) about 50 years
ago, and have been a driving force in OSS development ever since. Unix at Bell Labs, the Berkeley
Software Distribution, the Unix-compatible GNU system at MIT, and Linux by Linus Torvalds at
University of Helsinki are all examples of researcher-led precursors for today’s OSS ecosystem.

https://www.gw-openscience.org/


https://www.gw-openscience.org/

Open source software in research reproducibility

The term open source software was introduced about 24 years ago (Peterson, 2008) and its definition
put in black and white soon after by the Open Source Initiative (OSI).” It stipulates satisfaction
of ten criteria, including not just availability of the source code but also the attachment of a li-
cense to use, modify and redistribute it freely. And herein lies one of the reigning misconceptions
about open source software: simply sharing the source code in a hosting service, code repository
or website is not enough—one must attach a standard public license approved by the OSI for
the software to be called open source. Like with any creative work, copyright is automatically
attached to computer code when it is written, and thus any source code posted online must be
assumed “All Rights Reserved” by the copyright holder, unless it includes a license.

Open-source licenses are an invention of
great impact, as an alternative to intellectual-
property restrictions. They allow people to
coordinate their work freely, within the con-
fines of copyright law, while making access
and wide distribution their priority—this is fun-
damentally aligned with the norms of science,
where we value academic freedom and wide
dissemination of scientific findings. The key
benefit of OSI-approved licenses is that re-
searchers do not need extensive legal train-
ing or consultants to navigate these issues:
the licenses are “pre-packaged” and ready to
use. A researcher needs to know the condi-
tions of their employment contract (whether
the copyright belongs to the author or the em-
ployer), and be familiar with some basic li-
cense terms, e.g., as presented by Morin et al.
(2012). With that information, they (or their
employer) can choose one of the standard
licenses for any particular software project.
Sometimes the choice may be tinged with a
political-positionideological positions, for ex-
ample, in the alternative between a copyleft or
permissive license. A-copifleft license requires
that-any-derivative-works-be-also—under—the

Copyleft vs. permissive OSS licenses

Copyleft licenses require that any derivative works
called “share-alike” _ Some_developers_want_to
ensure open access to their work and all derivatives
for_posterity. _Although this may be considered
virtuous in_some circles, we should recognize that
the software. (A typical copyleft license is GPL.
Permissive licenses give more freedoms:_the only
or_any derivative works. Even commercial uses,
or incorporating the software into other proprietary
closed) works, is allowed. Academic and
research software benefits most from_permissive
licensing, enabling _more impact and_innovation.
a permissive license, e.g., in_encouraging industry
users who_would spurn share-alike code. Typical
examples are the BSD License, the MIT License and
the Apache License. In my research group, we use
license, which uses the phrase “substantial portions
of the Software.” Thus, a user could copy without
attribution some of an MIT-licensed code (as long
as the portion is deemed “not substantial”’). In
research, we always prefer full aftribution of any
portions of reused works, and BSD 3-clause is more



https://opensource.org

Open source software in research reproducibility

See the sidebar.)

From the legal perspective, open source is a licensing model, as described above. When applied
to research software, it contributes to transparency of the computational workflow and availabil-
ity for others to use/modify/redistribute the software, one of the requisites of reproducibility.
Transparency is a necessary but not sufficient condition, however: reproducible research implies
the ability of another researcher or team to reuse the data, code and conditions of analysis of a
published study. The key operating word here is reuse, which as any researcher who has tried
to exercise the digital artifacts of another will attest can be laborious and sometimes impossible.
An open source license does not by itself support reuse; good-quality software design and docu-
mentation are needed in at least some measure. In support of software quality, the open source
development model takes center stage. Some guiding principles of the open development model
are the mantra “release early, release often,” the idea of cultivating users as co-developers, and
making full use of the Internet for distributed collaboration. Developing in the open is conducive
to improved quality because users can make source-aware bug reports and cooperate with de-
velopers in more usefully identifying issues and devising solutions. When open source software
projects nurture a community of users and contributors, problems can be identified and fixed
more quickly, software design and quality improve over time, and user documentation can be
made more friendly and complete. All of this helps make the software reusable. 1 should clarify

that to satisfy reproducibility we may only need a weak form of software reuse: in the context
of the original publication, to confirm the results. The stronger standard of software reuse that
applies to libraries, for example, which have to work in many contexts, is not needed here. Even
so, it is a bar seldom passed by research articles published today.

Some researchers remain apprehensive of the open development model, citing concerns that un-
skilled users may introduce unwanted changes or misuse the software leading to incorrect results.
We should address another common misconception: developing in the open does not mean that
others can make changes in your code willy-nilly. The communities of open source software have
evolved coordinations, roles and tooling that expressly mediate distributed teams and contrib-
utors. Users outside of the original authors who are interested in the software make their own
copy of the source code, and can make modifications in their copy. If they would like their mod-
ifications to be adopted by the original team, they make a move called a “pull request,” where
they present their modified code to be peer reviewed and considered for merging into the original
code base. If the original team has decided that they will consider such pull requests (a choice
developers make ahead of time, depending on their staffing situation), team members taking the
role of “maintainers” will review the proposed changes and engage in a conversation with the
user-contributor to understand it, test it, request adjustments, and eventually approve or reject it.
To facilitate this undertaking, developer communities have instigated formal processes and cre-
ated enabling technologies. Teams increasingly adopt software testing methodologies, automate
the processes of building from source and running the tests (called “continuous integration”),
and appoint leaders to conduct decision-making (i.e., adopt governance). These practices further
contribute to maintaining and improving code quality and facilitating reuse of software. As for
misuse of the code leading to wrong results, the scientific tradition of peer review has never quite




Open source software in research reproducibility

eliminated erroneous results, but paired with transparency, the likelihood is that errors will be
found sooner rather than later.

Another reason cited by researchers for working with closed, in-house code, and declining to
release it even when submitting a scientific manuscript for review, is the time and effort they asso-
ciate with this requirement. LeVeque and Mitchell (2012) in their CiSE editorial cited a researcher
survey: 78% said they don’t share code because of the extra work to clean up and document it. The
question this raises is: can you trust the research results produced with such tangled and undoc-
umented code? Since the times of the Enlightenment in the seventeenth century, the founders of
empirical science stipulated that experiments should be recorded with painstaking detail: Francis
Bacon and Robert Boyle ushered in a new era of carefully controlled and recorded experiments.
The laboratory notebook has remained an indispensable companion of researchers for a few hun-
dred years, not much changed until recent adoption of computational alternatives. “Good science
requires good record keeping,” according to the NIH guidelines -° (INIH, 2008). “Good records
are complete, accurate and understandable to others. Records of research activities should be kept
in sufficient detail to allow another scientist skilled in the art to repeat the work and obtain the
same results.” What many researchers balking at cleaning and documenting their research code
fail to discern is that this failure could impact their own ability to retrace their steps, were their
results challenged by a peer. Or it could impact the ability of a new team member to pick up where
another (say, a graduate student) left off.

The tools of open code development deliver built-in good record-keeping. In my experience, after
using code version control for some time, one grows to see the value of applying it to everything:
lab policies, web pages, documentation, personal notes, internal reports, article drafts, etc. The
advantages are particularly apparent when more than one team member works on the same doc-
ument or material: who added or deleted what, and when, is automatically captured. In a recent
webinar for Nature (Perkel, 2021), I related our experience finding a small bug in the code that we
used to generate all the results in a paper published recently. In fact, a collaborator’s graduate stu-
dent identified the bug in the process of learning about the method and following the code, thanks
to it being openly available. After our initial alarm, it took just just a few days to download our
own reproducibility packages from archival repositories (Zenodo and Figshare) and re-run all the
computational experiments, to arrive at sufficiently close results that the main findings were unal-
tered (to our relief!). Having these detailed records and archives may have saved my team weeks
or months of work trying to retrace the full workflow of the published work. Like lab safety and
security measures that seem like a burden of extra labor until they are really needed, reproducible
research practices are insurance for that moment when a problem surprises us. I'm reminded of
my favorite quote from Donoho et al. (2009): “... if everyone on a research team knows that ev-
erything they do is going to someday be published for reproducibility, they’ll behave differently
from day one. Striving for reproducibility imposes a discipline that leads to better work.”

Science is a conversation

We tend to think of publication as the only medium for communicating scientific progress and
findings, but science progresses also through preprint sharing, correspondence, conference inter-
actions, social media, and any medium of conversation. Scientific knowledge is created in con-
versations among scientists, and using an expanded definition of conversation among scientists

3



Open source software in research reproducibility

interacting with a body of knowledge (which is the product and record of other scientists” conver-
sations). In this sense, science is a conversation. Computational science places the computer as
an agent in that conversation, and software is nothing more than the language (“code”) we use to
interact with the machine and other researchers at the same time.

In the last fifteen years or so, the framework of Connectivism 3 integrated theories of (human) learn-
ing with the new ways of interacting in the digital age. It defines connective knowledge as knowl-
edge created and shared by an interacting community of individuals, or knowledge distributed
across a network of connections. Under this lens, science is the formation of connections: between
concepts, artifacts, people, theories, actions, etc. The role of the scientist is to be literate in this form
of conversation, being able to traverse fluidly the network of connections and build the network
further. Openness is a property of networks that make them more successful for learning, that is,
developing shared knowledge—other such properties are connectivity, diversity, and autonomy.
Open sharing has a pedagogical purpose in this framework, as openness increases our capacity to
create knowledge together. Quoting co-founder of Connectivism, Stephen Downes2067),~ , talk-
ing about open education (Downes, 2017): “Openness is about the possibilities of communicating
with other people [...] It’s not about stuff, what you do with stuff. It's about what you do with
each other.” Openness promotes rich networks, lively communities, and fertile connections. And
this is good for science.

Open-source software projects, and the culture of their communities, have thus more to offer than
a scheme for securing freedom from copyright restrictions on shared code. Open-source commu-
nities have developed templates for coordinating the actions of diverse groups of people, aimed at
improving communication and working more effectively together. The ethos of open-source cul-
ture favors open development, networked collaboration, community around open-source projects,
and a value-based framework. Gabriella Coleman (Coleman, 2012) researched open-source cul-
ture from an anthropological point of view, and observed that open-source projects build organi-
zations with strong commitments to freedom of access, transparency, and joint governance and
decision-making. In this setting is that open-source licenses were conceived, with the goal of en-
abling people to coordinate their work freely. With web technology playing a key role in those
coordinations, platforms like GitHub gave form to structured conversations, while teams adopted
rituals of collaboration and associated language, enabling them to create value together through
productive interactions.

Thirty five years ago, Terry Winograd and Fernando Flores in their book Understanding Computers
and Cognition (Winograd and Flores, 1986) talked about designing computer systems that can sup-
port humans to be more effective together. This was a groundbreaking textbook on system design,
addressing how information technology could help improve human communication in organiza-
tions and in society. A key observation is that the coordinated action of people or teams happens
in the context of conversations. Language is not simply a vehicle for transmitting information about
the world, but for changing the world: it has the dimension of acts and we invent the future via
conversations for action. This perspective helps explain the success of open-source collaboration
practices. Take the “pull request,” for example. In this basic coordination of the open develop-
ment model, a third-party (not belonging to the core team of developers) makes some changes to
a code base and requests these changes to be merged into the official code repository. The changes
could be a new feature or a bug fix. Notified of this request, members of the original software

3
3



Open source software in research reproducibility

team review the changes, and may decide to accept the pull request, reject it, or ask for further
changes in the third-party code. These moves are all standard in open-source communities, and
everyone knows how to act depending on their role. Subject to time and effort constraints of those
involved, a software project grows and improves thanks to contributions via pull request. GitHub
structured the conversations around code that are pull requests, and gave tangible form to the
premise of Winograd and Flores in this context. Thus, GitHub became a tool-of-the trade in the
open-source world that supports the workflow, and promotes a culture of collaboration.

The open-source standard workflows have other examples of the commitment-based culture of
collaboration, mediated by web platforms such as GitHub. Consider the “issue tracker”: a project’s
contribution policy may ask to “log an issue for any question or problem.” Implied in this pol-
icy is a commitment by the maintainers to coordinate actions for addressing the issue, even if it
is to mark it as postponed for later review. In fact, a public version control repository is a signal
that the project is open to users participating in the development process, either simply watching
the progress, or filing bug reports in the issue tracker, or offering code changes via pull request.
It is common to view a public issue tracker as a strong indicator of the project’s commitment to
openness. For this reason, having an open issue tracker is a requirement for a submission to The
Journal of Open Source Software (http:/ /joss.theoj.org/) to proceed to peer review, for example.
From the perspective of Winograd and Flores, and the conversations-for-action model, when in
open-source projects we talk about building community, we are also talking about building com-
mitment. And by this we mean the promises that get things done: people making promises to
each other that take care of their concerns, changing the direction of the future. Quoting Fernando
Flores: “When people coordinate successfully in [a conversation for action] ... action happens,
trust is enhanced, and relationships are strengthened.”

Reproducibility is-about trustas a trust-building endeavor

Reproducibility leaders Jeff Leek and Roger Peng wrote: “To maintain the integrity of science
research and the public’s trust in science, the scientific community must ensure reproducibility
and replicability by engaging in a more preventative approach that greatly expands data analysis
education and routinely uses software tools.” (Leck and Peng, 2015) Both scientific integrity and
general trust in science are often linked with reproducibility. At the same time, a crisis narrative
often percolates through discussions during this period of escalating concern with reproducibility
and replicability (the past twelve years or so). Why? In part because the broad discussion was
catalyzed by highly public fiascos, such as the failure to replicate research on genomic signatures
of lung cancer, leading to the uncovering of misconduct by Anil Potti at Duke University. ° It is in
these instances where trust breakdowns occur that we begin paying more sharp attention to trust-
building activities. Add in the rapid transition to computation and data becoming central to the
scientific enterprise, and we have a credibility crisis, according to Donoho et al. (2009) (and many
others). Inaction would amount to “blind trust” or denial (self-deception), which is corrosive to
integrity. So we, the computational science community, have been debating what changes we
need to make to our practice to increase trustworthiness. We have thus focused on the traits of
studies that can be called reproducible: they are published transparently, they share data and code,
and they adopt good practices of data management and record-keeping. Next, we find ourselves
debating what to do with the shared digital artifacts of research: should they be peer reviewed,
alongside to a research manuscript? Should journals exercise the computational workflow, and

3



Open source software in research reproducibility

confirm that the results can be reproduced? Soon, we are facing monumental hurdles associated
to the effort and cost of such implementation of reproducible research (especially in the context of
large-scale or high-performance computing).

In such deliberations, it is worthwhile to reflect on what it is that we're trying to achieve when
demanding that published research be reproducible. As previously stated, at the core is transparency:_
researchers should always provide all needed information for another to be able to reproduce
their results. The research not only has to be published, but also conducted in such a way that
reproducibility is realizable. It is uncertain to what extent the scientific community needs to
exercise the research artifacts, in the review process or post peer review, to confirm the reproduction
of results. As discussed in the National Academies of Sciences, Engineering, and Medicine (2019) report.
(see Finding 4-5), assessments of the state of reproducibility of published works usually fall back
on assessing transparency, as a proxy. The committee assessed that “determining the extent
of issues related to computational reproducibility across fields or within fields of science and
engineering is a massive undertaking.” Similarly, directly reproducing all results presented for
peer review would involve a gargantuan effort. What is the point, then, of making all digital
artifacts—primary and secondary data, analysis code, and metadata—available and open? I propose
that in essence reproducibility is an endeavor aiming to build trust. Scientific findings are supported
by evidence, but one of the shared values of the scientific ethos is “organized skepticism”—this
is one of the four so-called Mertonian norms; see Christensen et al. (2019). We aspire for the
scholarly record to be trustworthy, and thus allocate credibility building activities, even if in
principle we might say that the “facts speak for themselves.” Arguably, peer review was historically
introduced to similarly increase trust in the published literature.

But trustworthiness and trust are not the same thing. Solomon and Flores (2001) [p.76 ff.] ex-
plain that trustworthiness is a trait that can be demonstrated, established with reasons and ev-
idence. Trust, the act of trusting, hangs on the experience and frame of mind of the one who
trusts, the other party in the equation. Trust is dynamic and social: it is cultivated through com-
mitment and action, through conversation. For this reason, I do not believe it is possible to de-
velop IT products that fully automate reproducibility, and offer a “one-click solution.” We cannot
“solve” the reproducibility problem with any approach that takes away the responsibility of the

human participants. In this argumentation, I am influenced by the deliberate definitions of trust
by Solomon and Flores (2001). The precise meaning of trust is affected by context: whether it be
interpersonal relationships, business, or politics, the meaning specializes to that setting. Here
we are discussing the conduct of science, and our collective trust in the findings or results (not
on _the researcher, personally) and ultimately trust in the scientific institution. Regardless of
context, however, we can distinguish between simple trust, and authentic trust. We often think of
simple trust first, upon hearing the word: that basic, unthinking trust that is taken for granted,
trust by default, absence of suspicion, without scrutiny or reflection. This kind of trust is a
poetic illusion, and it rarely exists. “Authentic trust is both reflective and honest with itself
and others. [...] Authentic trust is not opposed to distrust so much as it is in a _continuing
dialectic with it” (Solomon and Flores, 2001, p.92). Thus, it is not a paradox to say that scientific
facts are objectively true, and to also say that to trust research findings we expect to rely on
a network of information shared and acts performed. It is perhaps more like a polarity: two
seeming opposites that need each other. Authentic trust is rational, deriving from both actions and
commitments. Importantly, trust is a way of dealing with complexity in an ever more complex
world, say Solomon and Flores (2001) [p.9]. Scientific research has also dramatically increased
in complexity. Even in social sciences (Christensen et al,, 2019), empirical research can involve



Open source software in research reproducibility

thousands of lines of code. Since currently none of this code ends up in the published research
article, many in the scientific community are calling for research code to be made publicly available
alongside the paper. Yet, simply dumping megabytes of spaghetti code on GitHub is not helpful.

In a talk titled “Science as Amateur Software Development” (McElreath, 2020) anthropologist and

evolutionary ecologist Richard McElreath links trust to open source software as follows. He spoke
from his own experience as a researcher and also a member of open source software communities.
At the 49:22 time mark, he draws an analogy between software engineering methods of unit
testing and continuous integration, and empirical science workflows. From expressing a theory as
a probabilistic program, using an algorithm to prove that the analysis will be able to identify causal
effects, and testing the pipeline with synthetic data sets, and doing all this with standard open
source methods, “now you're ready and we trust your pipeline; it’s time to put real data in it [and]
of course it’s important that all of this history be open and available in a public repository so that
people trust the analysis.” He later says: “the big problem [...] in common between the endeavor of
science and the endeavor of developing open source software to support science is in integrating
work from different experts and doing it in a responsible way, and doing it transparently, in public
so that people who come after us can can have some trust in what we’ve done and in our work
and also when mistakes are discovered [...] they can go back and find the source of the mistake

and correct it and and learn from that...”

realization: we are learning to work better together. At some stage, you start having reservations
about papers you read not only because they are published without accompanying code and data,
but because the code shows no signs of being developed in the open model. On the other hand, for
large-scale projects involving computations that cannot be reproduced due to cost or availability
of the computing facility, we are more comfortable trusting the results if the history of the project
displays open development practices since inception. Open source software development helps
manage complex projects with high quality, injecting professionalism in addition to promoting
transparency. It thus gives reproducibility a boost.

Concluding remarks

Reproducibility is essentially about-trust,one-that-makes-an activity that builds trust, making
possible a more effective interdependency of research results and associated artifacts. Adopting
open source software in science gives rise to a form of social contract and way of working that
builds trust. Research is impactful when the network of results and how they are shared have a
meaningful role in society and/or the continuing accumulation of knowledge, with researchers
participating productively. When computational science is part of this activity, how does using
open source software affect that? By itself, it may not affect much at all, but if it is the model for
“how we do things,” how we work in collaborations large and small, then it can have a meaningful
role—looking at it with a connectivist lens. The model for how we work with research software
becomes: when we are writing and running code, we feel a responsibility, we are committed to
ensure this knowledge is injected into the network, to be interacted with. In this model, we see
software and data as the artifacts we create to learn with, and to learn with others. This has an
effect on the researchers who are writing code and running it to produce results, growing their
sense of value in the science enterprise. It reflects the change in culture we need for valuing
software and data, and publishing reproducible research.



Open source software in research reproducibility

References

Brown, D. A., K. Vahi, M. Taufer, V. Welch, and E. Deelman, 2021: Reproducing GW150914: The first
observation of gravitational waves from a binary black hole merger. Computing in Science & Engineering,
23(2), 73-82, d0i:10.1109/MCSE.2021.3059232.

Christensen, G., J. Freese, and E. Miguel, 2019: Transparent and reproducible social science research. University
of California Press, doi:10.1525/9780520969230.

Coleman, E. G., 2012: Coding freedom. Princeton University Press, doi:10.1515/9781400845293.

Donoho, D. L., A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden, 2009: Reproducible research in com-
putational harmonic analysis. Computing in Science & Engineering, 11(1), 8-18, doi:10.1109/MCSE.2009.15.

Downes, S., 2017: Open course 1. [Video] YouTube: https://youtu.be/FPHYAFcUZIA.
Franklin, A., 1989: The neglect of experiment. Cambridge University Press, ISBN 0-521-37965-2.

Hunter, J. D., 2004: Why we should be using BSD. Neuroimaging in Python. Online: http:/nipy.sourceforge.
net/nipy/stable/fag/johns_bsd_pitch.html.

Leek, J. T. and R. D. Peng, 2015: Opinion: Reproducible research can still be wrong: Adopting a prevention
approach. Proceedings of the National Academy of Sciences, 112(6), 1645-1646, d0i:10.1073 /pnas.1421412111.

LeVeque, R. J. and V. Mitchell, Ian M .and Stodden, 2012: Reproducible research for scientific comput-
ing: Tools and strategies for changing the culture. Computing in Science & Engineering, 14(4), 13-17,
doi:10.1109/MCSE.2012.38.

McElreath, R., 2020: Science as amateur software development. [Video] YouTube: https:/youtu.be/zwRdO9_
GGhY.

Morin, A., J. Urban, and P. Sliz, 2012: A quick guide to software licensing for the scientist-programmer.
PLOS Computational Biology, 8(7), €1002598, doi:10/b5hp.

National Academies of Sciences, Engineering, and Medicine, 2019: Reproducibility and Replicability in Science.
National Academies Press, Washington, D.C., ISBN 978-0-309-48616-3, doi:c5jp.

NIH, U., 2008: Guidelines for scientific record keeping in the intramural research program at the NIH.
Online: https:/oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines-scientific_
recordkeeping.pdf.

Perkel, J., 2021: How to make your research reproducible. Nature Career Column, doi:10.1038/d41586-021-
02887-8.

Peterson, C., 2008: How i coined the term ‘open source’. Post at Opensource.com, https://opensource.com/
article/18/2/coining-term-open-source-software.

Solomon, R. C. and E. Flores, 2001: Building trust: In business, politics, relationships, and life. Oxford University
Press, ISBN 0-19-512685-8.

Winograd, T. and E. Flores, 1986: Understanding computers and cognition: A new foundation for design. Ablex
Publishing Corporation, ISBN 0-89391-050-3.

10


https://doi.org/10.1109/MCSE.2021.3059232
https://doi.org/10.1525/9780520969230
https://doi.org/10.1515/9781400845293
https://doi.org/10.1109/MCSE.2009.15
https://youtu.be/FPHYAFcUziA
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
https://doi.org/10.1073/pnas.1421412111
https://doi.ieeecomputersociety.org/10.1109/MCSE.2012.38
https://youtu.be/zwRdO9_GGhY
https://youtu.be/zwRdO9_GGhY
https://doi.org/b5hp
https://doi.org/c5jp
https://oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines-scientific_recordkeeping.pdf
https://oir.nih.gov/sites/default/files/uploads/sourcebook/documents/ethical_conduct/guidelines-scientific_recordkeeping.pdf
https://doi.org/10.1038/d41586-021-02887-8
https://doi.org/10.1038/d41586-021-02887-8
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software

