CS1632, Lecture §:
Traceabllity Matrices + Smoke ,
Exploratory Testing, and Path-Based

Testing
Bill Laboon

Traceabillity Matrices

» Answer the questions - how do | know that my tests are
checking all of the requirements, AND/OR that all of my
requirements are being checked by tests?

» Simply a list of requirements and the associated test case

Example - Good Matrix

LOGIN-REQ: GOOD-LOGIN-TEST, BAD-LOGIN-TEST, THREE-TIMES-ERROR-TEST
DATABASE-REQ: VALID-QUERY-TEST, INVALID-QUERY-TEST, DB-DOWN-TEST
LOGIN-SCREEN-REQ: LOW-BANDWIDTH-TEST, HIGH-BANDWIDTH-TEST
CALC-REQ: ADDI1-TEST, ADD2-TEST, ADD3-TEST, SUBTRACTI-TEST

Example - Requirement Noft Tested!

LOGIN-REQ:

DATABASE-REQ: VALID-QUERY-TEST, INVALID-QUERY-TEST, DB-DOWN-TEST
LOGIN-SCREEN-REQ: LOW-BANDWIDTH-TEST, HIGH-BANDWIDTH-TEST
CALC-REQ: ADDI1-TEST, ADD2-TEST, ADD3-TEST, SUBTRACTI-TEST

Example - Tests Not Checking Any Regs

LOGIN-REQ: GOOD-LOGIN-TEST, BAD-LOGIN-TEST, THREE-TIMES-ERROR-TEST
DATABASE-REQ: VALID-QUERY-TEST, INVALID-QUERY-TEST, DB-DOWN-TEST
LOGIN-SCREEN-REQ: LOW-BANDWIDTH-TEST, HIGH-BANDWIDTH-TEST
CALC-REQ: ADDI1-TEST, ADD2-TEST, ADD3-TEST, SUBTRACTI-TEST

: DEFROBALIZE-TEST, ANTI-DEFROBALIZE-TEST

Exploratory Testing

»\Ne have developed a very formal manner of
testing

»Develop requirements

» \Nrite fest plan
»(Creafte and check traceability maftrix
»[xecute fests

Exploratory Testing

» Byt we have assumed that we know the EXACT
expected behavior, EXACTLY how to cause it, and it is
necessary to DEFINE all of these behaviors

» \Works fine in some circumstances!

» But not others!

®» |f | asked you to “test a poker program”, what would you
doe

Sometimes, we don’t know exactly what the
expected behavior is! Why not?¢

» Subjective
®» Domain-specific
Uncertain of exact reproduction steps

Jncertain of inferface

Unfamiliarity with general interaction

mplicit requirements

Exploratory Testing

» Definition: festing without a specific test plan, in
which the goals are to both learn more about
the system and inform the development of

system by finding defects and possible
enhancements

Sometimes called “ad hoc” festing

Personally, | don’t like this tferm
t implies carelessness
_ess rigid |= more careless

-aith in the testers is required
»To not go down blind alleys

»To use their best judgment

How To Do It

1. Use your best judgment
2. If In doubt about next step, see Step 1.

Faith in Testers

Exploratory testing has faith that you
Instinctively "know" that there's a defect, or

at least that you know something doesn't
seem quite right.

Tips:

. Try to accomplish important tasks
. Think of edge cases on the fly
. Try doing different things together

A 0O N —

. If were the programmer, what wouldn't | have thought
ofe

5. Write down defects IMMEDIATELY

6. You can keep track of your steps and write them down
later as formal tests.

Benefits of Exploratory Testing

1. Fast

2. Flexible

3. Relies on testers’ knowledge, and helps improve it
4. Very easy to updatel

Drawbacks to Exploratory Testing

.Unregulated

Possibly unrepeatable

Hard to say how much coverage there is
Difficult to automate

AN WO N —

Smoke Testing

Smoke Testing (plumbing)

» Send smoke down the pipes to find leaks BEFORE sending
water or other fluids

» \Why?

» |f there is a leak, much easier to clean up / find smoke

» \Won't waste effort

» \Won't cause further damage (high pressure water going through @
hole means a bigger hole will be formed)

Smoke Testing (software)

» Do some minimal testing to ensure that the system is, in fact,
testable or ready to be released

» \Why<e

®» No need to test system that can’t perform minimal acceptable
functionality

» Setting up test harnesses / installing software may be non-trivial
» Avoid wasting testers’ time

Smoke Testing can be:

» Scripted: A few small but important test cases are run
before the software is ready to be tested. These can be
automated or manual.

» Unscripted: An experienced tester does exploratory
testing for a small amount of time o ensure that it meefts
Minimum standards.

Smoke Testing is a GATEWAY

FULL TEST PLAN

SMOKE TEST

e

.. | Brunch kogi sartorial
o chillwave twee. Seitan
aesthetic...

Test Case: DREAMCATCHER-TEST

Preconditions: Hashtag echo park chambray.
Execution Steps: Man braid banh mi keytar, single-
origin coffee flannel small batch church-key.
Postconditions: Bespoke distillery waistcoat ethical
photo booth.

Test Case: FREEGAN-GREEN-JUICE-TEST
Preconditions: Tote bag actually post-ironic bitters.
Execution Steps: Cronut iPhone raw denim whatever

tilde.
Postconditions: Authentic scenester normcore
farm-to-table wayfarers

Media Check

» A redlly, really basic smoke test
» Can the CD be reade
» Do files exist on servere

» FiC,

A Note on “Sanity Testing”

» Note: Some texts use the tferm “sanity testing” for
“smoke testing”. | avoid this because:

» |t could be offensive

®» | think the parallel with smoke testing in plumbing is
much more apt

®» However, you may come across the term so | wanted to cover it

Path-Based Testing

» \What are all the possible paths through @
program/method/etc.e

» Then test all of the paths

» Similar fo equivalence class partitioning

Path-Based Testing Example

®» Racing game: user can select Red Car (fast acceleration, low
top speed) or Blue Car (slow acceleration, high top speed).
One or the other car always wins.

» Possible paths:
» Red Car -> Win -> “You win, Blue Car loses”
» Red Car -> Lose -> “You lose, Blue Car wins”
» Blue Car -> Win -> “You win, Red Car loses”
» Blue Car -> Lose -> “You lose, Red Car wins”

Complexity Increases Superlinearly As
We Add Variables / Pathways

» Add “Easy / Hard” modes to previous game

®» Hard mode rewards you with an exclamation point

» Now there are EIGHT paths fo test

» One Boolean variable doubles the number of paths/tests

Possible Paths

» Fosy -> Red Car -> Win -> “You win, Blue Car loses”

» Fasy -> Red Car -> Lose -> "You lose, Blue Car wins”

» Fasy -> Blue Car -> Win -> “You win, Red Car loses”

» Fasy -> Blue Car -> Lose -> “You lose, Red Car wins”

ard -> Red Car -> Win -> “You win, Blue Car loses!”
ard -> Red Car -> Lose -> “You lose, Blue Car wins!”
ard -> Blue Car -> Win -> “You win, Red Car loses!”
ard -> Blue Car -> Lose -> “You lose, Red Car wins!”

Possible paths in a method

// How many paths?

public 1nt doSomething (boolean a, boolean b) {
1f (a || b) |
return 5;
} else {
return 97;

J

Possible paths in a method

// How many paths?

public 1nt somethingElse (boolean a, boolean b) {
int toReturn = 0;
1if (a) {

} else {

J

return toReturn;

Possible paths in a method

// How many paths?

public 1nt somethingElse (int x) {
if (x < 0) {
return -1;

} else {
1f (x % 2 == 0) {
return 3;
} else {
if (x > 100) {

X++;
}

return XxX;

McCabe Cyclomatic Complexity

®» A measure of the number of paths through a method,
function, or other unit of control flow

» Analysis of method from the perspective of graph theory
» Higher complexity -> more chance of defects

» More details: http:// www.mccabe.com/pdf/mccabe-
nist235r.pdf

http://www.mccabe.com/pdf/mccabe-nist235r.pdf

McCabe cyclomatic complexity

= Views a program’s conftrol flow through the lens of graph theory
®» Given a method’s control flow, calculate:
®» F = number of edges of graph

» N = number of nodes of graph
» o = number of connected components (usually 1)
» Cyclomatic complexity =E- N+ 2p

®» Also equal fo the number of possible paths through a
method

Cyclomatic Complexity Example

public int whichQuadrant (int x, int y) {
int toReturn = -1;
if (x > 0) {
if (y > 0) {
toReturn = 1;

} else { i
toReturn = 4; 10+
} 11 1
el 0 5wm{“”
if (y > 0) { -azis
} ;oRe:urn = 2; 0 -5 \\‘5 10 »
else
ol (0,0)
toReturn = 3;] origie
} 111 1A%
} ~10 4

return toReturn;

}

Cyclomatic Complexity Example

Cyclomatic Complexity Example

Cyclomatic Complexity Example

Edges = 11
Nodes = 9

p=1

E-N+2p

1M1-9+2*1

CC=14

Understanding Cyclomatic Complexity

* The maximum number of linearly independent
paths through the control flow of the method

* Lower cyclomatic complexity = lower risk, easier
to understand

* <10 = very simple, low risk

» > 50 = very complex, high risk

