
CS1632, Lecture 5: 
Traceability Matrices + Smoke ,
Exploratory Testing, and Path-Based
Testing
Bill Laboon

Traceability Matrices

! Answer the questions - how do I know that my tests are
checking all of the requirements, AND/OR that all of my
requirements are being checked by tests?

! Simply a list of requirements and the associated test case

Example - Good Matrix

LOGIN-REQ: GOOD-LOGIN-TEST, BAD-LOGIN-TEST, THREE-TIMES-ERROR-TEST

DATABASE-REQ: VALID-QUERY-TEST, INVALID-QUERY-TEST, DB-DOWN-TEST

LOGIN-SCREEN-REQ: LOW-BANDWIDTH-TEST, HIGH-BANDWIDTH-TEST

CALC-REQ: ADD1-TEST, ADD2-TEST, ADD3-TEST, SUBTRACT1-TEST

Example - Requirement Not Tested!

LOGIN-REQ:
DATABASE-REQ: VALID-QUERY-TEST, INVALID-QUERY-TEST, DB-DOWN-TEST

LOGIN-SCREEN-REQ: LOW-BANDWIDTH-TEST, HIGH-BANDWIDTH-TEST

CALC-REQ: ADD1-TEST, ADD2-TEST, ADD3-TEST, SUBTRACT1-TEST

Example - Tests Not Checking Any Reqs

LOGIN-REQ: GOOD-LOGIN-TEST, BAD-LOGIN-TEST, THREE-TIMES-ERROR-TEST

DATABASE-REQ: VALID-QUERY-TEST, INVALID-QUERY-TEST, DB-DOWN-TEST

LOGIN-SCREEN-REQ: LOW-BANDWIDTH-TEST, HIGH-BANDWIDTH-TEST

CALC-REQ: ADD1-TEST, ADD2-TEST, ADD3-TEST, SUBTRACT1-TEST

: DEFROBALIZE-TEST, ANTI-DEFROBALIZE-TEST

Exploratory Testing

!We have developed a very formal manner of
testing
!Develop requirements

!Write test plan

!Create and check traceability matrix

!Execute tests

Exploratory Testing

! But we have assumed that we know the EXACT
expected behavior, EXACTLY how to cause it, and it is
necessary to DEFINE all of these behaviors
! Works fine in some circumstances!
! But not others!

! If I asked you to “test a poker program”, what would you
do?

Sometimes, we don’t know exactly what the
expected behavior is! Why not?

!Subjective
!Domain-specific
!Uncertain of exact reproduction steps
!Uncertain of interface
!Unfamiliarity with general interaction
!Implicit requirements

Exploratory Testing

!Definition: testing without a specific test plan, in
which the goals are to both learn more about
the system and inform the development of
system by finding defects and possible
enhancements

Sometimes called “ad hoc” testing

!Personally, I don’t like this term
!It implies carelessness
!Less rigid != more careless
!Faith in the testers is required

!To not go down blind alleys

!To use their best judgment

How To Do It

1. Use your best judgment
2. If in doubt about next step, see Step 1.

Faith in Testers

Exploratory testing has faith that you
instinctively "know" that there's a defect, or
at least that you know something doesn't
seem quite right.

Tips:
1. Try to accomplish important tasks
2. Think of edge cases on the fly
3. Try doing different things together
4. If I were the programmer, what wouldn't I have thought

of?
5. Write down defects IMMEDIATELY
6. You can keep track of your steps and write them down

later as formal tests.

Benefits of Exploratory Testing

1. Fast
2. Flexible
3. Relies on testers’ knowledge, and helps improve it
4. Very easy to update!

Drawbacks to Exploratory Testing

1.Unregulated
2.Possibly unrepeatable
3.Hard to say how much coverage there is
4.Difficult to automate

Smoke Testing

Smoke Testing (plumbing)

! Send smoke down the pipes to find leaks BEFORE sending
water or other fluids

! Why?
! If there is a leak, much easier to clean up / find smoke

! Won’t waste effort
! Won’t cause further damage (high pressure water going through a

hole means a bigger hole will be formed)

Smoke Testing (software)

! Do some minimal testing to ensure that the system is, in fact,
testable or ready to be released

! Why?
! No need to test system that can’t perform minimal acceptable

functionality

! Setting up test harnesses / installing software may be non-trivial
! Avoid wasting testers’ time

Smoke Testing can be:

! Scripted: A few small but important test cases are run
before the software is ready to be tested. These can be
automated or manual.

! Unscripted: An experienced tester does exploratory
testing for a small amount of time to ensure that it meets
minimum standards.

Smoke Testing is a GATEWAY

Media Check

! A really, really basic smoke test
! Can the CD be read?

! Do files exist on server?

! Etc.

A Note on “Sanity Testing”

!Note: Some texts use the term “sanity testing” for
“smoke testing”. I avoid this because:
!It could be offensive

!I think the parallel with smoke testing in plumbing is
much more apt

! However, you may come across the term so I wanted to cover it

Path-Based Testing

!What are all the possible paths through a
program/method/etc.?

!Then test all of the paths
!Similar to equivalence class partitioning

Path-Based Testing Example

! Racing game: user can select Red Car (fast acceleration, low
top speed) or Blue Car (slow acceleration, high top speed).
One or the other car always wins.

! Possible paths:
! Red Car -> Win -> “You win, Blue Car loses”
! Red Car -> Lose -> “You lose, Blue Car wins”
! Blue Car -> Win -> “You win, Red Car loses”
! Blue Car -> Lose -> “You lose, Red Car wins”

Complexity Increases Superlinearly As
We Add Variables / Pathways

! Add “Easy / Hard” modes to previous game
! Hard mode rewards you with an exclamation point
! Now there are EIGHT paths to test
! One Boolean variable doubles the number of paths/tests

Possible Paths

!Easy -> Red Car -> Win -> “You win, Blue Car loses”
!Easy -> Red Car -> Lose -> “You lose, Blue Car wins”
!Easy -> Blue Car -> Win -> “You win, Red Car loses”
!Easy -> Blue Car -> Lose -> “You lose, Red Car wins”
!Hard -> Red Car -> Win -> “You win, Blue Car loses!”
!Hard -> Red Car -> Lose -> “You lose, Blue Car wins!”
!Hard -> Blue Car -> Win -> “You win, Red Car loses!”
!Hard -> Blue Car -> Lose -> “You lose, Red Car wins!”

Possible paths in a method
// How many paths?  
 
public int doSomething(boolean a, boolean b) { 
 if (a || b) {  
 return 5;  
 } else {  
 return 97;  
 }  
}

Possible paths in a method
// How many paths?  
 
public int somethingElse(boolean a, boolean b) { 
 int toReturn = 0;  
 if (a) {  
 toReturn = 5;  
 } else if (b) {  
 toReturn = 97;  
 } else {  
 toReturn = 6;

 }

 return toReturn;  
}

Possible paths in a method
// How many paths?  
 
public int somethingElse(int x) {  
 if (x < 0) {  
 return -1;  
 } else {  
 if (x % 2 == 0) {  
 return 3;  
 } else {  
 if (x > 100) {  
 x++;  
 }  
 return x;  
 }  
 }  
}

McCabe Cyclomatic Complexity

! A measure of the number of paths through a method,
function, or other unit of control flow

! Analysis of method from the perspective of graph theory
! Higher complexity -> more chance of defects
! More details: http://www.mccabe.com/pdf/mccabe-

nist235r.pdf

http://www.mccabe.com/pdf/mccabe-nist235r.pdf

McCabe cyclomatic complexity

! Views a program’s control flow through the lens of graph theory
! Given a method’s control flow, calculate:

! E = number of edges of graph
! N = number of nodes of graph
! p = number of connected components (usually 1)
! Cyclomatic complexity = E - N + 2p
! Also equal to the number of possible paths through a

method

Cyclomatic Complexity Example
public int whichQuadrant(int x, int y) {  
 int toReturn = -1;  
 if (x > 0) {  
 if (y > 0) {  
 toReturn = 1;  
 } else {  
 toReturn = 4;  
 }  
 } else {  
 if (y > 0) {  
 toReturn = 2;  
 } else {  
 toReturn = 3;  
 }  
 }  
 return toReturn;  
}

Cyclomatic Complexity Example

 enter

 1

x > 0

Y > 0 Y > 0

 4 3

 2

 exit

Cyclomatic Complexity Example

 enter

 1

x > 0

Y > 0 Y > 0

 4 3

 2

 exit

n1
n2

n3 n4n5

n7 n8

n6

n9

e1 e2

e4 e5

e3

e6

e9e8

e7

e10 e11

Cyclomatic Complexity Example
 enter

 1

x > 0

Y > 0 Y > 0

 4 3

 2

 exit

n1
n2

n3 n4n5

n7 n8

n6

n9

e1 e2

e4 e5

e3

e6

e9e8

e7

e10 e11

Edges = 11 
Nodes = 9 
p = 1 
 
E - N + 2p 
 
11 - 9 + 2 * 1 
 
CC = 4

Understanding Cyclomatic Complexity
• The maximum number of linearly independent

paths through the control flow of the method

• Lower cyclomatic complexity = lower risk, easier
to understand

• < 10 = very simple, low risk

• > 50 = very complex, high risk

