diff --git a/files/models/Baichuan2/openai_api.py b/files/models/Baichuan2/openai_api.py new file mode 100644 index 000000000000..ddcb6e9cb23a --- /dev/null +++ b/files/models/Baichuan2/openai_api.py @@ -0,0 +1,233 @@ +# coding=utf-8 +# Implements API for Baichuan2-7B-Chat in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat) +# Usage: python openai_api.py + +import gc +import time +import torch +import uvicorn +from pydantic import BaseModel, Field, validator +from fastapi import FastAPI, HTTPException +from fastapi.middleware.cors import CORSMiddleware +from contextlib import asynccontextmanager +from typing import Any, Dict, List, Optional, Union +from transformers import AutoModelForCausalLM, AutoTokenizer +from sse_starlette.sse import ServerSentEvent, EventSourceResponse +from transformers.generation.utils import GenerationConfig +import random +import string + + +@asynccontextmanager +async def lifespan(app: FastAPI): # collects GPU memory + yield + if torch.cuda.is_available(): + torch.cuda.empty_cache() + torch.cuda.ipc_collect() + + +app = FastAPI(lifespan=lifespan) + +app.add_middleware( + CORSMiddleware, + allow_origins=["*"], + allow_credentials=True, + allow_methods=["*"], + allow_headers=["*"], +) + +class ModelCard(BaseModel): + id: str + object: str = "model" + created: int = Field(default_factory=lambda: int(time.time())) + owned_by: str = "owner" + root: Optional[str] = None + parent: Optional[str] = None + permission: Optional[list] = None + +class ModelList(BaseModel): + object: str = "list" + data: List[str] = [] # Assuming ModelCard is a string type. Replace with the correct type if not. + +class ChatMessage(BaseModel): + role: str + content: str + + @validator('role') + def check_role(cls, v): + if v not in ["user", "assistant", "system"]: + raise ValueError('role must be one of "user", "assistant", "system"') + return v + +class DeltaMessage(BaseModel): + role: Optional[str] = None + content: Optional[str] = None + + @validator('role', allow_reuse=True) + def check_role(cls, v): + if v is not None and v not in ["user", "assistant", "system"]: + raise ValueError('role must be one of "user", "assistant", "system"') + return v + +class ChatCompletionRequest(BaseModel): + model: str + messages: List[ChatMessage] + temperature: Optional[float] = None + top_p: Optional[float] = None + max_length: Optional[int] = 8192 # max_length should be an integer. + stream: Optional[bool] = False + +class ChatCompletionResponseChoice(BaseModel): + index: int + message: ChatMessage + finish_reason: str + + @validator('finish_reason') + def check_finish_reason(cls, v): + if v not in ["stop", "length"]: + raise ValueError('finish_reason must be one of "stop" or "length"') + return v + +class ChatCompletionResponseStreamChoice(BaseModel): + index: int + delta: DeltaMessage + finish_reason: Optional[str] + + @validator('finish_reason', allow_reuse=True) + def check_finish_reason(cls, v): + if v is not None and v not in ["stop", "length"]: + raise ValueError('finish_reason must be one of "stop" or "length"') + return v + +class ChatCompletionResponse(BaseModel): + id:str + object:str + + @validator('object') + def check_object(cls,v): + if v not in ["chat.completion","chat.completion.chunk"]: + raise ValueError("object must be one of 'chat.completion' or 'chat.completion.chunk'") + return v + + created :Optional[int]=Field(default_factory=lambda:int(time.time())) + model:str + choices :List[Union[ChatCompletionResponseChoice,ChatCompletionResponseStreamChoice]] + + +def generate_id(): + possible_characters = string.ascii_letters + string.digits + random_string = ''.join(random.choices(possible_characters, k=29)) + return 'chatcmpl-' + random_string + + +@app.get("/v1/models", response_model=ModelList) +async def list_models(): + global model_args + model_card = ModelCard(id="gpt-3.5-turbo") + return ModelList(data=[model_card]) + + +@app.post("/v1/chat/completions", response_model=ChatCompletionResponse) +async def create_chat_completion(request: ChatCompletionRequest): + global model, tokenizer + if request.messages[-1].role != "user": + raise HTTPException(status_code=400, detail="Invalid request") + query = request.messages[-1].content + prev_messages = request.messages[:-1] + if len(prev_messages) > 0 and prev_messages[0].role == "system": + query = prev_messages.pop(0).content + query + messages = [] + for message in prev_messages: + messages.append({"role": message.role, "content": message.content}) + + messages.append({"role": "user", "content": query}) + + if request.stream: + generate = predict(messages, request.model) + return EventSourceResponse(generate, media_type="text/event-stream") + + response = '本接口不支持非stream模式' + choice_data = ChatCompletionResponseChoice( + index=0, + message=ChatMessage(role="assistant", content=response), + finish_reason="stop" + ) + id='chatcmpl-7QyqpwdfhqwajicIEznoc6Q47XAyW' + + return ChatCompletionResponse(id=id,model=request.model, choices=[choice_data], object="chat.completion") + + +async def predict(messages: List[List[str]], model_id: str): + global model, tokenizer + id = generate_id() + created = int(time.time()) + choice_data = ChatCompletionResponseStreamChoice( + index=0, + delta=DeltaMessage(role="assistant",content=""), + finish_reason=None + ) + chunk = ChatCompletionResponse(id=id,object="chat.completion.chunk",created=created,model=model_id, choices=[choice_data]) + yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False)) + + current_length = 0 + + for new_response in model.chat(tokenizer, messages, stream=True): + if len(new_response) == current_length: + continue + + new_text = new_response[current_length:] + current_length = len(new_response) + + choice_data = ChatCompletionResponseStreamChoice( + index=0, + delta=DeltaMessage(content=new_text), + finish_reason=None + ) + chunk = ChatCompletionResponse(id=id,object="chat.completion.chunk",created=created,model=model_id, choices=[choice_data]) + yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False)) + + + choice_data = ChatCompletionResponseStreamChoice( + index=0, + delta=DeltaMessage(), + finish_reason="stop" + ) + chunk = ChatCompletionResponse(id=id,object="chat.completion.chunk",created=created,model=model_id, choices=[choice_data]) + yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False)) + yield '[DONE]' + + +def load_models(): + print("本次加载的大语言模型为: Baichuan-13B-Chat") + tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", use_fast=False, trust_remote_code=True) + # model = AutoModelForCausalLM.from_pretrained("Baichuan2-13B-Chat", torch_dtype=torch.float32, trust_remote_code=True) + model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", torch_dtype=torch.float16, trust_remote_code=True) + model = model.cuda() + model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-7B-Chat") + return tokenizer, model + +if __name__ == "__main__": + tokenizer, model = load_models() + uvicorn.run(app, host='0.0.0.0', port=6006, workers=1) + + while True: + try: + # 在这里执行您的程序逻辑 + + # 检查显存使用情况,如果超过阈值(例如90%),则触发垃圾回收 + if torch.cuda.is_available(): + gpu_memory_usage = torch.cuda.memory_allocated() / torch.cuda.max_memory_allocated() + if gpu_memory_usage > 0.9: + gc.collect() + torch.cuda.empty_cache() + except RuntimeError as e: + if "out of memory" in str(e): + print("显存不足,正在重启程序...") + gc.collect() + torch.cuda.empty_cache() + time.sleep(5) # 等待一段时间以确保显存已释放 + tokenizer, model = load_models() + else: + raise e + + diff --git a/files/models/Baichuan2/requirements.txt b/files/models/Baichuan2/requirements.txt new file mode 100644 index 000000000000..586f341b68dd --- /dev/null +++ b/files/models/Baichuan2/requirements.txt @@ -0,0 +1,14 @@ +protobuf +transformers==4.30.2 +cpm_kernels +torch>=2.0 +gradio +mdtex2html +sentencepiece +accelerate +sse-starlette +fastapi==0.99.1 +pydantic==1.10.7 +uvicorn==0.21.1 +xformers +bitsandbytes