Data 3 and 4 TOF

pmalinow

October 2023

Figure 1: Leading vs sub-leading mass distribution - Data

Figure 2: Leading vs sub-leading mass distribution - MC

Figure 3: Leading vs sub-leading mass distribution - Data, Cuts: Narrow Mass Window, $p_{\rm T}^{miss} \leq 0.15~{\rm GeV},~N_{TOF}^{cluster} \leq 9,~DCA_{daughters}^{leading} \leq 1.5~{\rm cm},~DCA_{daughters}^{subleading} \leq 1.5~{\rm cm},~vtx_{K^0K^0}^{dist} \leq 1.5~{\rm cm}$

Figure 4: Leading vs sub-leading mass distribution - Data, Cuts: Narrow Mass Window, $p_{\rm T}^{miss} \leq 0.15~{\rm GeV},~N_{TOF}^{cluster} \leq 9,~DCA_{daughters}^{leading} \leq 1.5~{\rm cm},~DCA_{daughters}^{subleading} \leq 1.5~{\rm cm},~vtx_{K^0K^0}^{dist} \leq 1.5~{\rm cm}$

Figure 5: distance between K0K0 vertices, Cuts: Narrow Mass Window, MC was scaled to the maximum of the data

Figure 6: DCA daughters, Cuts: Narrow Mass Window. MC was scaled to the maximum of the data

Figure 7: $p_{\mathrm{T}^{miss}}$, Cuts: Narrow Mass Window, $DCA^{leading}_{daughters} \leq 1.5$ cm, $DCA^{subleading}_{daughters} \leq 1.5$ cm, $vtx^{dist}_{K^0K^0} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 8: $N_{TOF}^{clusters}$ Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 9: R, Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 10: missing momentum in x direction - opposite py sign of the intact protons, Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 11: missing momentum in x direction - same py sign of the intact protons, Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 12: missing momentum in y direction - opposite py sign of the intact protons,, Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 13: missing momentum in y direction - same py sign of the intact protons,, Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm. MC was scaled to the maximum of the data

Figure 14: $m^{K_s^0K_s^0}$. Cuts: Narrow Mass Window, $DCA_{daughters}^{leading} \leq 1.5$ cm, $DCA_{daughters}^{subleading} \leq 1.5$ cm, $vtx_{K^0K^0}^{dist} \leq 1.5$ cm, $p_{\mathrm{T}}^{miss} < 0.15$ GeV, $N_{TOF}^{clusters} \leq 9$. MC was scaled to the maximum of the data