Skip to content

lambdazy/lzy

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lzy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pypi version Tests Java tests coverage Python tests coverage PyPI - Python Version Telegram chat

ʎzy

ʎzy is a platform for a hybrid execution of ML workflows that transparently integrates local and remote runtimes with the following properties:

  • Python-native SDK
  • Automatic env (pip/conda) sync
  • K8s-native runtime
  • Resources allocation on-demand
  • Env-independent results storage

Quick start

ʎzy allows running any python functions on a cluster by annotating them with @op decorator:

@op(gpu_count=1, gpu_type=GpuType.V100.name)
def train(data_set: Bunch) -> CatBoostClassifier:
    cb_model = CatBoostClassifier(iterations=1000, task_type="GPU", devices='0:1', train_dir='/tmp/catboost')
    cb_model.fit(data_set.data, data_set.target, verbose=True)
    return cb_model


# local python function call
model = train(data_set)

# remote call on a cluster
lzy = Lzy()
with lzy.workflow("training"):
    model = train(data_set)

Please read the tutorial for details.

Runtime

Check out our key concepts and architecture intro.

Community

Join our chat on telegram!

Development

Development guide.

Deployment

Deployment guide.