
LAMMPS Users and Developers Workshop
and Symposium, March 24th-28th 2014

Dr. Axel Kohlmeyer

Associate Dean for Scientific Computing
College of Science and Technology

Temple University, Philadelphia

http://sites.google.com/site/akohlmey/

a.kohlmeyer@temple.edu

Accelerating classical MDAccelerating classical MD
for multi-core CPUs and GPUsfor multi-core CPUs and GPUs

http://sites.google.com/site/akohlmey/

2

Standard LAMMPS Parallelization

● MPI based (MPI emulator for serial execution)
● Uses domain decomposition with 1 domain

per MPI task (= processor). Each MPI task
looks after the atoms in its domain

● Atoms move from MPI
task to MPI task as they
move through the system

● Assumes same amount of
work (force computations)
in each domain.

3

Why Bother Adding OpenMP?

1.Why not do it?

a) LAMMPS is already very parallel

b) Even more run-time settings to optimize

c) OpenMP is often less effective than MPI (for MD)

2. Why do it anyway?

a) On multi-core machines (Cray XT5) LAMMPS can
run faster with MPI when some CPU cores are idle

b) Parallelization over particles, not domains

c) PPPM has scaling limitations. At high node counts
it would be better to run it only on a subset of tasks

4

OpenMP Parallelization

● OpenMP is directive based
=> well written code works with or without

● OpenMP can be added incrementally
● OpenMP only works in shared memory

=> multi-core processors are now ubiquitous
● OpenMP hides the calls to a threads library

=> less flexible, more overhead, but less effort
● Caution: need to worry about race conditions,

memory corruption, false sharing, Amdahl's law

5

How to add OpenMP to LAMMPS

● LAMMPS is very modular, just add new classes
 derived from non-threaded implementation

● Pairwise interactions (consume most time)
● i,j nested loop over neighbors can be parallelized
● each thread processes different “i” atoms

● Neighbor list build (binning still serial)
● i,j nested loop over atoms and neighboring bins

● Dihedrals and other bonded interactions
● Replace selected function(s) in derived class

6

Threading Class Relations

PairLJ
- serial implementation
- all non-threaded code

PairLJOMP
- derived from PairLJ
 and ThrOMP
- replaces ::compute()
 with threaded version
- gets access to ThrData
 instance from FixOMP

ThrOMP
- thread-safe utility functions
- reduction of per-thread force

ThrData
- per-thread accumulators
- one instance per thread

FixOMP
- regularly called during MD loop
- determines when to reduce forces
- manages ThrData instances
- toggles thread-related features

7

Naive OpenMP LJ Kernel
#if defined(_OPENMP)
#pragma omp parallel for default(shared) \
 private(i) reduction(+:epot)
#endif
 for(i=0; i < (sys­>natoms)­1; ++i) {
 double rx1=sys­>rx[i];
 double ry1=sys­>ry[i];
 double rz1=sys­>rz[i];
 [...]

#if defined(_OPENMP)
#pragma omp critical
#endif
 {
 sys­>fx[i] += rx*ffac;
 sys­>fy[i] += ry*ffac;
 sys­>fz[i] += rz*ffac;
 sys­>fx[j] ­= rx*ffac;
 sys­>fy[j] ­= ry*ffac;
 sys­>fz[j] ­= rz*ffac;
 }

 {
 sys­>fx[i] += rx*ffac;
 sys­>fy[i] += ry*ffac;
 sys­>fz[i] += rz*ffac;
 sys­>fx[j] ­= rx*ffac;
 sys­>fy[j] ­= ry*ffac;
 sys­>fz[j] ­= rz*ffac;
 }

Race condition:
“i” will be unique for
each thread, but not “j”
Or some “j” may be an
“i” of another thread
=> multiple threads
update the same location

Each thread will
work on different
values of “i”

The “critical” directive will let only
one thread execute this block at a time

Timings (108 atoms):
serial: 4.0s
1 thread: 4.2s
2 threads: 7.1s
4 threads: 7.7s
8 threads: 8.6s

8

Alternatives to “omp critical”

● Use omp atomic to protect each force addition
=> requires hardware support (modern x86)
 1Thr: 6.3s, 2Thr: 5.0s, 4Thr: 4.4s, 8Thr: 4.2s
=> faster than omp critical for multiple threads
but it is slower than the serial code (4.0s)

● Don't use Newton's 3rd Law
=> no race condition
 1Thr: 6.5s, 2Thr: 3.7s, 4Thr: 2.3s, 8Thr: 2.1s
=> better scaling, but 2 threads ~= serial speed
=> this is what is done on GPU (many threads)

9

“MPI-like” Approach with OpenMP

#if defined(_OPENMP)
#pragma omp parallel reduction(+:epot)
#endif
 { double *fx, *fy, *fz;
#if defined(_OPENMP)
 int tid=omp_get_thread_num();
#else
 int tid=0;
#endif
 fx=sys­>fx + (tid*sys­>natoms); azzero(fx,sys­>natoms);
 fy=sys­>fy + (tid*sys­>natoms); azzero(fy,sys­>natoms);
 fz=sys­>fz + (tid*sys­>natoms); azzero(fz,sys­>natoms);
 for(int i=0; i < (sys­>natoms ­1); i += sys­>nthreads) {
 int ii = i + tid;
 if (ii >= (sys­>natoms ­1)) break;
 rx1=sys­>rx[ii];
 ry1=sys­>ry[ii];
 rz1=sys­>rz[ii];

Thread number is like MPI rank

sys->fx holds storage for one full fx array for
each thread => race condition is avoided.

10

MPI-like Approach with OpenMP (2)

#if defined (_OPENMP)
#pragma omp barrier
#endif
 i = 1 + (sys­>natoms / sys­>nthreads);
 fromidx = tid * i;
 toidx = fromidx + i;
 if (toidx > sys­>natoms) toidx = sys­>natoms;

 for (i=1; i < sys­>nthreads; ++i) {
 int offs = i*sys­>natoms;
 for (int j=fromidx; j < toidx; ++j) {
 sys­>fx[j] += sys­>fx[offs+j];
 sys­>fy[j] += sys­>fy[offs+j];
 sys­>fz[j] += sys­>fz[offs+j];
 }
 }

● We need to write our own reduction:

Need to make certain, all threads
are done with computing forces

Use threads to
parallelize the
reductions

11

OpenMP Timings Comparison
● omp critical timings

 1Thr: 4.2s, 2Thr: 7.1s, 4Thr: 7.7s, 8Thr: 8.6s

● omp atomic timings
 1Thr: 6.3s, 2Thr: 5.0s, 4Thr: 4.4s, 8Thr: 4.2s

● omp parallel region (MPI-like) timings
 1Thr: 4.0s, 2Thr: 2.5s, 4Thr: 2.2s, 8Thr: 2.5s

● No Newton's 3rd law timings
 1Thr: 6.5s, 2Thr: 3.7s, 4Thr: 2.3s, 8Thr: 2.1s

=> the omp parallel variant is best for few threads, no
Newton's 3rd variant better for more threads
=> cost for force reduction larger for more threads

12

1 2 3 4 6 8 12 16 20 24 32

0

5

10

15

20

2x Intel Xeon 2.66Ghz (Harpertown) w/ DDR Infiniband
CHARMM (lj/charmm/coul/long + pppm), 32000 Atoms

Number of Nodes

T
im

e
fo

r
10

00
 M

D
 s

te
ps

 /s

1 6 11 16 21 26 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

Number of Nodes

P
ar

a
lle

l E
ffi

ci
en

cy

8 MPI / Node

4 MPI + 2 OpenMP / Node

4 MPI / Node
2 MPI + 4 OpenMP / Node

1 MPI + 8 OpenMP / Node

13

14

Running Big

● Vesicle fusion study:
impact of lipid ratio in
binary mixture

● cg/cmm/coul/long
● Experimental size

=> 4M CG-beads for
1 vesicle and solvent

● 30,000,000 CPU hour
INCITE project

15

Strong Scaling (Cray XT5)

27 63 148 345 805 1878

0.04

0.08

0.17

0.36

1 Vesicle CG System / 3,862,854 CG-Beads

12 MPI / 1 OpenMP

6 MPI / 2 OpenMP

4 MPI / 3 OpenMP

2 MPI / 6 OpenMP

Nodes

Ti
m

e
pe

r M
D

 s
te

p
(s

ec
)

16

Strong Scaling (2) (Cray XT5)

256 569 1263 2805 6231

0.1

0.15

0.24

0.39

0.61

8 Vesicles CG-System / 30,902,832 CG-Beads

12 MPI / 1 OpenMP

6 MPI / 2 OpenMP

4 MPI / 3 OpenMP

2 MPI / 6 OpenMP

Nodes

Ti
m

e
pe

r
M

D
 S

te
p

(s
ec

)

17

128 256 384 768 128 256 384 768 768

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 64 Nodes, Cray XT5

Other
Neighbor
Comm
Kspace
Bond
Pair

PE

Ti
m

e
in

 s
ec

on
ds

The Curse of the k-Space (1)

4
M

P
I/

N
od

e

6
M

P
I/

N
od

e

1
2

M
P

I/
N

o
de

2
M

P
I

+
 6

 O
pe

n
M

P
/N

o
de

1 MPI/Node
+ OpenMP

18

The Curse of the k-Space (2)

256 512 768 1536 256 512 768 1536 1536

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 128 Nodes, Cray XT5

Other

Neighbor

Comm

Kspace

Bond

Pair

PE

Ti
m

e
in

 s
ec

on
ds

4
M

P
I/

N
od

e

6
M

P
I/

N
od

e

1
2

M
P

I/
N

o
de

2
M

P
I

+
 6

 O
pe

n
M

P
/N

o
de

1 MPI/Node
+ OpenMP

19

The Curse of the k-Space (3)

1024 2048 3072 6144 1024 2048 3072 6144 6144

0

5

10

15

20

25

Rhodopsin Benchmark, 860k Atoms, 512 Nodes, Cray XT5

Other

Neighbor

Comm

Kspace

Bond

Pair

PE

T
im

e
 i

n
 s

e
c

o
n

d
s

4
M

P
I/

N
o

de

6
 M

P
I/

N
od

e

12
 M

P
I/

N
od

e

2
M

P
I

+
 6

 O
pe

n
M

P
/N

o
de

1 MPI/Node
+ OpenMP

20

Additional Improvements

● OpenMP threading added to charge density
accumulation and force application in PPPM

● Force reduction only done on last /omp style
● Integration style verlet/split contributed by Voth

group which run k-space on separate partition
(compatible with OpenMP version of PPPM)

● Added threading to selected fixes like charge
equilibration for COMB many-body potential

● Added threading to fix nve/sphere integrator

21

Current GPU Support in LAMMPS
● Multiple developments from different groups
● Converged to two efforts with two philosophies
● GPU package (minimalistic)

● pair styles, neighbor lists and k-space (optional):
● Download coordinates, retrieve forces
● Run asynchronously to bonded (and k-space)

● USER-CUDA package (see next talk)
● Replace all classes that touch atom data
● Data transfer between host and GPU as needed

22

Special Features of “GPU” Package

● Can be compiled for CUDA or OpenCL due to
using “Geryon” preprocessor macros

● Can attach multiple MPI tasks to one GPU for
improved GPU utilization (up to 4x over-
subscription on “Fermi”, up to 15x on “Kepler”)

● Uses a “fix” to manage GPUs and compute
kernel dispatch, “styles” dispatch kernels
asynchronously, “fix” then retrieves the forces
after all other force computations are completed

● Tuned for good scaling with fewer atoms/GPU

23

1x GPU Performance in LAMMPS

8 Core, 2.8GHz GTX 480 sp GTX 480 mp GTX 480 dp C2050 sp C2050 mp C2050 dp ATI V8800 sp ATI V8800 mp ATI V8800 dp
0

20

40

60

80

100

120

140
Bulk Water, LJ+long-range electrostatics

PPPM on GPU
5,376 Water 5000 Step

21,504 Water 1000 Step

Ti
m

e
 in

 s
e

co
n

d
s

GeForce Tesla

FirePro

24

Multiple GPUs per Node

8 Cores, 2.8GHz 1x C2050 mp 2x C2050 mp 4x C2050 mp 1x V8800 mp 2x V8800 mp 4x V8800 mp
0

10

20

30

40

50

60

70

80

90

100

Bulk Water, LJ + long-range electrostatics

PPPM on GPU

5,376 water, 5000 steps

21,504 water, 1000 steps

Ti
m

e
 in

 s
e

co
n

d
s

Tesla

FirePro

25

Comments on GPU Acceleration

● Mixed precision (force computation in single,
force accumulation in double precision) good
compromise: little overhead, good accuracy on
forces, stress/pressure less so

● GPU acceleration larger for models that require
more computation in force kernel

● Acceleration drops with lower number of atoms
per GPU => limited strong scaling on “big iron”

● Acceleration amount dependent on host & GPU

26

Installation of USER-OMP and GPU
● USER-OMP package:

● make yes-user-omp to install sources
● Add -fopenmp (GNU) or -openmp (Intel) to CC and

LINK definitions in your makefile to enable OpenMP
● Compilation without OpenMP => similar to OPT

● GPU package:
● Compile library in lib/gpu for CUDA or OpenCL
● make yes-gpu to install style sources which are

wrappers for GPU library
● Tweak lib/gpu/Makefile.lammps.??? as needed

27

Using Accelerated Code

● All accelerated styles are optional and need to
be activated in the input or from command line

● Naming convention lj/cut -> lj/cut/omp lj/cut/gpu
● From command line -sf omp or -sf gpu
● Inside script: suffix omp or suffix gpu

and suffix on or suffix off
● Use package omp/gpu command to adjust

settings for acceleration and selection of GPUs
● -sf command line flag implies default settings

28

Conclusions and Outlook: OpenMP
● OpenMP+MPI is almost always a win, especially

with large node counts (=> capability computing)
● USER-OMP also contains serial optimizations

and thus useful without OpenMP compiled in
● Minimal changes to LAMMPS core code
● USER-OMP only a transitional implementation

since efficient only on a small number of threads
● Longer-term solution also needs to consider

vectorization and thus be more GPU-like and
benefits from different data layout (see next talk)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

