

Out-of-band root CA Public Key

{: id="sect-5.2.5"}

Moved to Appendix

Root CA Key Update

{: id="sect-4.4"} {#sect-f}

This discussion only applies to CAs that are directly trusted by some

end entities. Self-signed CAs SHALL be considered as directly

trusted CAs. Recognizing whether a non-self-signed CA is supposed to

be directly trusted for some end entities is a matter of CA policy

and is thus beyond the scope of this document.

The basis of the procedure described here is that the

RFC4210 describes extra certificates used by a CA protects to protect its

new public key using its previous private key key. This method has been

shown to be very use case specific

and vice versa. Thus,

when a CA updates its key pair it must generate two extra

cACertificate attribute values if certificates no assumptions are made

available

using an X.500 directory (for a total of four: OldWithOld,

OldWithNew, NewWithOld, done on this aspect and NewWithNew).

RootCaKeyUpdateContent is

updated to specify the extra fields as optional.

When a CA changes its key pair, those entities who have acquired the

old CA public key via "out-of-band" means are most affected. It is

these These end

entities who will need access to acquire the new CA public key

protected with the old CA private key. However, they will only

require this for in a limited period (until they have acquired the new

CA public key via the "out-of-band" mechanism). This will typically

be easily achieved when these end entities' trusted way.

While noting that using link certificates expire.

The data structure used to protect the new and old CA public keys is

a standard certificate (which may also contain extensions). There

are no new data structures required.

Note 1: This scheme does not make use of any of in the X.509 v3

extensions as it must be able to work even for version 1

certificates. The presence form of the KeyIdentifier extension would make

NewWithOld is

used for efficiency improvements.

Note 2:. While the scheme could be generalized to cover cases where

the CA updates its key pair more than once during the validity period

of one of its end entities' certificates, this generalization seems

of dubious value. Not having in some use cases making assumption on this

generalization simply means that

the validity periods of certificates issued with the old CA key pair

cannot exceed the end of the OldWithNew validity period.

Note 3: This scheme ensures that end entities will acquire the new

CA public key, at the latest by aspect is

beyond the expiry scope of the last certificate

they owned that was signed with the old CA private key (via the

"out-of-band" means). Certificate and/or key update operations

occurring at other times do not necessarily require this (depending

on the end entity's equipment).

Note 4: document.

In practice, a new root CA may have a slightly different subject

DN, e.g., indicating a generation identifier like the year of issuance or

a version number, for instance in an OU element. How to bridge trust to

the new root CA certificate in a CA DN change or a cross-certificate

scenario

is out of scope for this document.

CA Operator Actions

{: id="sect-4.4.1"} id="sect-f.1"}

To change the key of the CA, the CA operator does the following:

1. Generate a new key pair;

1. Create a certificate containing the old new CA public key signed with

 the new private key (the "old "new with new" certificate);

1. Optionally: Create a certificate containing the new CA public key signed

with

 the old private key (the "new with old" or sometimes referred to as

"link" certificate);

1. Optionally: Create a certificate containing the new old CA public key

signed with

 the new private key (the "new "old with new" certificate);

1. Publish these new certificates via the repository and/or other

 means (perhaps using a CAKeyUpdAnn message or RootCaKeyUpdateContent);

1. Export the new CA public key so that end entities may acquire it

 using the "out-of-band" mechanism (if required). it..

The old CA private key is then no longer required. However, the old

CA public key will remain in use for some time. The old CA public

key is no longer required (other than for non-repudiation) when all

end entities of this CA have securely acquired the new CA public key.

The "old with new" certificate must have a validity period with the same

notBefore and notAfter time as the "old with old" certificate.

The "new with old" certificate must have a validity period with the same

notBefore time as the "new with new" certificate and a notAfter time by

which

all end entities of this CA will securely possess the new CA public key (at

the latest, at the notAfter time of the "old with old" certificate).

The "new with new" certificate must have a validity period with a notBefore

time that is before the notAfter time of the "old with old" certificate and

a notAfter time that is after the notBefore time of the next update of this

certificate.

The "old with new" certificate must have a validity period with the same

notBefore and notAfter time as the "old with old" certificate.

Note: Further operational considerations on transition from one root CA

self-signed certificate to the next is available in [RFC 8649 Section

5](#RFC8649).

Verifying Certificates

{: id="sect-4.4.2"}

Normally when verifying a signature, the verifier verifies (among

other things) the certificate containing the public key of the

signer. However, once a CA is allowed to update its key there are a

range of new possibilities. These are shown in the table below.


~~~~ 

             Repository contains NEW    Repository contains only OLD 

               and OLD public keys       public key (due to, e.g., 

                                           delay in publication) 

                PSE      PSE Contains  PSE Contains    PSE Contains 

             Contains     OLD public    NEW public      OLD public 

            NEW public       key            key            key 

                key 

 

 Signer's   Case 1:      Case 3:       Case 5:        Case 7: 

 certifi-   This is      In this case  Although the   In this case 

 cate is    the          the verifier  CA operator    the CA 

 protected  standard     must access   has not        operator  has 

 using NEW  case where   the           updated the    not updated 

 key pair   the          repository in repository the the repository 

            verifier     order to get  verifier can   and so the 

            can          the value of  verify the     verification 

            directly     the NEW       certificate    will FAIL 

            verify the   public key    directly - 

            certificate                this is thus 

            without                    the same as 

            using the                  case 1. 

            repository 

 

 Signer's   Case 2:      Case 4:       Case 6:        Case 8: 

 certifi-   In this      In this case  The verifier   Although the 

 cate is    case the     the verifier  thinks this    CA operator 

 protected  verifier     can directly  is the         has not 

 using OLD  must         verify the    situation of   updated the 

 key pair   access the   certificate   case 2 and     repository the 

            repository   without       will access    verifier can 

            in order     using the     the            verify the 

            to get the   repository    repository;    certificate 

            value of                   however, the   directly - 

            the OLD                    verification   this is thus 

            public key                 will FAIL      the same as 

                                                      case 4. 

~~~~ 


Note: Instead of using a repository, the end entity can use the root CA

update

general message to request the respective certificates from a PKI

management

entity, see {{sect-5.3.19.15}}, and follow the required validation steps.

Verification in Cases 1, 4, 5, and 8

{: id="sect-4.4.2.1"}

In these cases, the verifier has a local copy of the CA public key

that can be used to verify the certificate directly. This is the

same as the situation where no key change has occurred.

Note that case 8 may arise between the time when the CA operator has

generated the new key pair and the time when the CA operator stores

the updated attributes in the repository. Case 5 can only arise if

the CA operator has issued both the signer's and verifier's

certificates during this "gap" (the CA operator SHOULD avoid this as

it leads to the failure cases described below)

Verification in Case 2

{: id="sect-4.4.2.2"}

In case 2, the verifier must get access to the old public key of the

CA. The verifier does the following:

1. Look up the caCertificate attribute in the repository and pick

 the OldWithNew certificate (determined based on validity periods;

 note that the subject and issuer fields must match);

1. Verify that this is correct using the new CA key (which the

 verifier has locally);

1. If correct, check the signer's certificate using the old CA key.

Case 2 will arise when the CA operator has issued the signer's

certificate, then changed the key, and then issued the verifier's

certificate; so it is quite a typical case.

Verification in Case 3

{: id="sect-4.4.2.3"}

In case 3, the verifier must get access to the new public key of the

CA. In case a repository is used, the verifier does the following:

1. Look up the cACertificate attribute in the repository and pick

 the NewWithOld certificate (determined based on validity periods;

 note that the subject and issuer fields must match);

1. Verify that this is correct using the old CA key (which the

 verifier has stored locally);

1. If correct, check the signer's certificate using the new CA key.

Case 3 will arise when the CA operator has issued the verifier's

certificate, then changed the key, and then issued the signer's

certificate; so it is also quite a typical case.

Note: Alternatively, the verifier can use the root CA update general

message

to request the respective certificates from a PKI management entity, see

{{sect-5.3.19.15}}, and follow the required validation steps.

Failure of Verification in Case 6

{: id="sect-4.4.2.4"}

In this case, the CA has issued the verifier's PSE, which contains

the new key, without updating the repository attributes. This means

that the verifier has no means to get a trustworthy version of the

CA's old key and so verification fails.

Note that the failure is the CA operator's fault.

Failure of Verification in Case 7

{: id="sect-4.4.2.5"}

In this case, the CA has issued the signer's certificate protected

with the new key without updating the repository attributes. This

means that the verifier has no means to get a trustworthy version of

the CA's new key and so verification fails.

Note that the failure is again the CA operator's fault.

Revocation - Change of CA Key

{: id="sect-4.4.3"}

As we saw above, the verification of a certificate becomes more

complex once the CA is allowed to change its key. This is also true

for revocation checks as the CA may have signed the CRL using a newer

private key than the one within the user's PSE.

The analysis of the alternatives is the same as for certificate

verification.

Out-of-band root CA Public Key

{: id="sect-5.2.5"} id="sect-f.2"}

Each root CA must be able to publish its current public key via some

"out-of-band" means. While such mechanisms are beyond the scope of

this document, we define data structures that can support such

mechanisms.

There are generally two methods available: either the CA directly

publishes its self-signed certificate, or this information is

available via the Directory (or equivalent) and the CA publishes a

hash of this value to allow verification of its integrity before use.


~~~~ asn.1 

  OOBCert ::= Certificate 

~~~~ 


The fields within this certificate are restricted as follows:

* The certificate MUST be self-signed (i.e., the signature must be

 verifiable using the SubjectPublicKeyInfo field);

* The subject and issuer fields MUST be identical;

* If the subject field is NULL, then both subjectAltNames and

 issuerAltNames extensions MUST be present and have exactly the

 same value;

* The values of all other extensions must be suitable for a self-signed

 certificate (e.g., key identifiers for subject and issuer must be the

 same).


~~~~ asn.1 

  OOBCertHash ::= SEQUENCE { 

     hashAlg     [0] AlgorithmIdentifier     OPTIONAL, 



     certId      [1] CertId                  OPTIONAL, 

     hashVal         BIT STRING 

  } 

~~~~ 


The intention of the hash value is that anyone who has securely

received the hash value (via the out-of-band means) can verify a

self-signed certificate for that CA.

