Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Word Embedding Attention Network

Code for "Word Embedding Attention Network: Generating Words by Querying Distributed Word Representations for Paraphrase Generation" [pdf]

Requirements

  • Ubuntu 16.04
  • Python 3.6
  • Pytorch 1.0.0
  • allennlp 0.7.2
  • torchfile

Data Preparation

  • Step 1: Download the PWKP dataset and put it in the folder data/.
  • Step 2: Preprocess the dataset
cd preprocess/
python3 process_pkwp.py

Run

  • Step 1: Train a model
python3 run.py -gpu 0 -mode train -dir save_path
  • Step 2: Restore and evaluate the model with the BLEU metric
python3 run.py -gpu 0 -mode evaluate -restore save_path/best.th

Pretrained Model

The code is currently non-deterministic due to various GPU ops, so you are likely to end up with a slightly better or worse evaluation. We provide a pretrained model to reproduce the results reported in our paper.

Cite

Hopefully the codes and the datasets are useful for the future research. If you use the above codes or datasets for your research, please kindly cite the following paper:

@inproceedings{wean,
  author    = {Shuming Ma and Xu Sun and Wei Li and Sujian Li and Wenjie Li and Xuancheng Ren},
  title     = {Word Embedding Attention Network: Generating Words by Querying Distributed Word 
	       Representations for Paraphrase Generation},
  booktitle = {{NAACL} {HLT} 2018, The 2018 Conference of the North American Chapter
	       of the Association for Computational Linguistics: Human Language Technologies},
  year      = {2018}
}

About

Code for "Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation" (NAACL 2018)

Resources

Releases

No releases published

Packages

No packages published