From de3576eefe032ae83556bd8ceb0b508bffeb66e0 Mon Sep 17 00:00:00 2001 From: Mason Daugherty Date: Fri, 31 Oct 2025 15:04:02 -0400 Subject: [PATCH] feat(docs): add component architecture documentation --- src/docs.json | 2 + src/oss/langchain/component-architecture.mdx | 134 +++++++++++++++++++ 2 files changed, 136 insertions(+) create mode 100644 src/oss/langchain/component-architecture.mdx diff --git a/src/docs.json b/src/docs.json index 02ced8e1e..5e623d869 100644 --- a/src/docs.json +++ b/src/docs.json @@ -349,6 +349,7 @@ "group": "Conceptual overviews", "icon": "book", "pages": [ + "oss/python/langchain/component-architecture", "oss/python/concepts/memory", "oss/python/concepts/context", "oss/python/langgraph/graph-api", @@ -693,6 +694,7 @@ "group": "Conceptual overviews", "icon": "book", "pages": [ + "oss/javascript/langchain/component-architecture", "oss/javascript/concepts/memory", "oss/javascript/concepts/context", "oss/javascript/langgraph/graph-api", diff --git a/src/oss/langchain/component-architecture.mdx b/src/oss/langchain/component-architecture.mdx new file mode 100644 index 000000000..b2dbd9a48 --- /dev/null +++ b/src/oss/langchain/component-architecture.mdx @@ -0,0 +1,134 @@ +--- +title: Component architecture +--- + +LangChain's power comes from how its components work together to create sophisticated AI applications. This page provides visual diagrams showing the relationships between different components, helping you understand how they fit together. + +## Core component ecosystem + +The diagram below shows how LangChain's major components connect to form complete AI applications: + +```mermaid +graph TD + %% Input Processing + subgraph "📥 Input Processing" + A[Text Input] --> B[Document Loaders] + B --> C[Text Splitters] + C --> D[Documents] + end + + %% Embedding & Storage + subgraph "🔢 Embedding & Storage" + D --> E[Embedding Models] + E --> F[Vectors] + F --> G[(Vector Stores)] + end + + %% Retrieval + subgraph "🔍 Retrieval" + H[User Query] --> I[Embedding Models] + I --> J[Query Vector] + J --> K[Retrievers] + K --> G + G --> L[Relevant Context] + end + + %% Generation + subgraph "🤖 Generation" + M[Chat Models] --> N[Tools] + N --> O[Tool Results] + O --> M + L --> M + M --> P[AI Response] + end + + %% Orchestration + subgraph "🎯 Orchestration" + Q[Agents] --> M + Q --> N + Q --> K + Q --> R[Memory] + end + + %% Styling + classDef inputStyle fill:#e1f5fe,stroke:#0277bd + classDef embeddingStyle fill:#f3e5f5,stroke:#7b1fa2 + classDef retrievalStyle fill:#e8f5e8,stroke:#388e3c + classDef generationStyle fill:#fff3e0,stroke:#f57c00 + classDef orchestrationStyle fill:#fce4ec,stroke:#c2185b + + class A,B,C,D inputStyle + class E,F,G embeddingStyle + class H,I,J,K,L retrievalStyle + class M,N,O,P generationStyle + class Q,R orchestrationStyle +``` + +### How components connect + +Each component layer builds on the previous ones: + +1. **Input Processing** – Transform raw data into structured documents +2. **Embedding & Storage** – Convert text into searchable vector representations +3. **Retrieval** – Find relevant information based on user queries +4. **Generation** – Use AI models to create responses, optionally with tools +5. **Orchestration** – Coordinate everything through agents and memory systems + +## Component categories + +LangChain organizes components into these main categories: + +| Category | Purpose | Key Components | Use Cases | +|----------|---------|---------------|-----------| +| **[Models](/oss/langchain/models)** | AI reasoning and generation | Chat models, LLMs, Embedding models | Text generation, reasoning, semantic understanding | +| **[Tools](/oss/langchain/tools)** | External capabilities | APIs, databases, etc. | Web search, data access, computations | +| **[Agents](/oss/langchain/agents)** | Orchestration and reasoning | ReAct agents, tool calling agents | Nondeterministic workflows, decision making | +| **[Memory](/oss/langchain/short-term-memory)** | Context preservation | Message history, custom state | Conversations, stateful interactions | +| **[Retrievers](/oss/integrations/retrievers)** | Information access | Vector retrievers, web retrievers | RAG, knowledge base search | +| **[Document Processing](/oss/integrations/document_loaders)** | Data ingestion | Loaders, splitters, transformers | PDF processing, web scraping | +| **[Vector Stores](/oss/integrations/vectorstores)** | Semantic search | Chroma, Pinecone, FAISS | Similarity search, embeddings storage | + +## Common patterns + +### RAG (Retrieval-Augmented Generation) +```mermaid +graph LR + A[User Question] --> B[Retriever] + B --> C[Relevant Docs] + C --> D[Chat Model] + A --> D + D --> E[Informed Response] +``` + +### Agent with tools +```mermaid +graph LR + A[User Request] --> B[Agent] + B --> C{Need Tool?} + C -->|Yes| D[Call Tool] + D --> E[Tool Result] + E --> B + C -->|No| F[Final Answer] +``` + +### Multi-agent system +```mermaid +graph LR + A[Complex Task] --> B[Supervisor Agent] + B --> C[Specialist Agent 1] + B --> D[Specialist Agent 2] + C --> E[Results] + D --> E + E --> B + B --> F[Coordinated Response] +``` + +## Next steps + +Now that you understand how components relate to each other, explore specific areas: + +- **Building your first RAG system**: [Knowledge Base Tutorial](/oss/langchain/knowledge-base) +- **Creating agents**: [Agents Guide](/oss/langchain/agents) +- **Working with tools**: [Tools Guide](/oss/langchain/tools) +- **Setting up memory**: [Memory Guide](/oss/langchain/short-term-memory) +- **Browse integrations**: [All Integrations](/oss/integrations/providers/overview)