diff --git a/src/oss/langchain/overview.mdx b/src/oss/langchain/overview.mdx
index 03172686aa..e0f9b5f0af 100644
--- a/src/oss/langchain/overview.mdx
+++ b/src/oss/langchain/overview.mdx
@@ -29,47 +29,11 @@ We recommend you use LangChain if you want to quickly build agents and autonomou
LangChain [agents](/oss/langchain/agents) are built on top of LangGraph in order to provide durable execution, streaming, human-in-the-loop, persistence, and more. You do not need to know LangGraph for basic LangChain agent usage.
-## Install
-
-:::python
-
-```bash pip
-pip install -U langchain
-# Requires Python 3.10+
-```
-
-```bash uv
-uv add langchain
-# Requires Python 3.10+
-```
-
-:::
-:::js
-
-```bash npm
-npm install langchain @langchain/core
-```
-
-```bash pnpm
-pnpm add langchain @langchain/core
-```
-
-```bash yarn
-yarn add langchain @langchain/core
-```
-
-```bash bun
-bun add langchain @langchain/core
-```
-
-:::
-
## Create an agent
:::python
```python
-# pip install -qU "langchain[anthropic]" to call the model
-
+# pip install -qU langchain "langchain[anthropic]"
from langchain.agents import create_agent
def get_weather(city: str) -> str:
@@ -119,6 +83,7 @@ console.log(
```
:::
+See the [Installation instructions](/oss/langchain/install) and [Quickstart guide](/oss/langchain/quickstart) to get started building your own agents and applications with LangChain.
## Core benefits
diff --git a/src/oss/langchain/quickstart.mdx b/src/oss/langchain/quickstart.mdx
index 64fc997aae..4231c85ce2 100644
--- a/src/oss/langchain/quickstart.mdx
+++ b/src/oss/langchain/quickstart.mdx
@@ -4,14 +4,24 @@ title: Quickstart
This quickstart takes you from a simple setup to a fully functional AI agent in just a few minutes.
+## Requirements
+
+For these examples, you will need to:
+
+* [Install](/oss/langchain/install) the LangChain package
+* Set up a [Claude (Anthropic)](https://www.anthropic.com/) account and get an API key
+* Set the `ANTHROPIC_API_KEY` environment variable in your terminal
+
+
+ **LangChain Docs MCP server**
+
+ If you're using an AI coding assistant, you should install the [LangChain Docs MCP server](/use-these-docs) to get the most out of it. This ensures your agent has access to the latest documentation and examples.
+
+
## Build a basic agent
Start by creating a simple agent that can answer questions and call tools. The agent will use Claude Sonnet 4.5 as its language model, a basic weather function as a tool, and a simple prompt to guide its behavior.
-
- For this example, you will need to set up a [Claude (Anthropic)](https://www.anthropic.com/) account and get an API key. Then, set the `ANTHROPIC_API_KEY` environment variable in your terminal.
-
-
:::python
```python
from langchain.agents import create_agent
@@ -205,7 +215,7 @@ Let's walk through each step:
:::
- Set up your [language model](/oss/langchain/models) with the right [parameters](/oss/langchain/models#parameters) for your use case:
+ Set up your [language model](/oss/langchain/models) with the right parameters for your use case:
:::python
@@ -232,6 +242,8 @@ Let's walk through each step:
);
```
:::
+
+ Depending on the model and provider chosen, initialization parameters may vary; refer to their reference pages for details.
:::python