diff --git a/src/oss/python/integrations/providers/all_providers.mdx b/src/oss/python/integrations/providers/all_providers.mdx
index da2212063..23d67eedb 100644
--- a/src/oss/python/integrations/providers/all_providers.mdx
+++ b/src/oss/python/integrations/providers/all_providers.mdx
@@ -9,3051 +9,3702 @@ Browse the complete collection of integrations available for Python. LangChain P
## Providers
-
- Custom AI integration platform for enterprise workflows.
-
-
-
- Knowledge management platform with AI-powered organization.
-
-
-
- Vector database for AI applications with deep learning focus.
-
-
-
- Advertising platform for GPT applications and AI services.
-
-
-
- Web scraping with natural language queries.
-
-
-
- AI21 Labs' Jurassic models for text generation.
-
-
-
- Experiment tracking and management platform.
-
-
-
- Unified API for multiple AI and ML services.
-
-
-
- Decentralized AI computing network platform.
-
-
-
- Data integration platform for ETL and ELT pipelines.
-
-
-
- Cloud-based spreadsheet and database platform.
-
-
-
- Blockchain development platform and APIs.
-
-
-
- European AI company's multilingual language models.
-
-
-
- Alibaba's cloud computing and AI services.
-
-
-
- Alibaba Cloud's real-time analytics database.
-
-
-
- Browser automation and web scraping tools.
-
-
-
- Approximate nearest neighbors search library.
-
-
-
- Claude models for advanced reasoning and conversation.
-
-
-
- Distributed computing platform for ML workloads.
-
-
-
- Real-time analytical database management system.
-
-
-
- Apache Software Foundation tools and libraries.
-
-
-
- Web scraping and automation platform.
-
-
-
- Apple's machine learning and AI frameworks.
-
-
-
- Multi-model database with graph capabilities.
-
-
-
- Domain-specific language model training platform.
-
-
-
- Geographic information system platform.
-
-
-
- Data labeling and annotation platform for NLP.
-
-
-
- ML observability and performance monitoring.
-
-
-
- AI model monitoring and governance platform.
-
-
-
- Academic paper repository and search platform.
-
-
-
- Data engineering and pipeline automation platform.
-
-
-
- Real-time news search and analysis API.
-
-
-
- Speech-to-text and audio intelligence API.
-
-
-
- DataStax Astra DB vector database platform.
-
-
-
- Data visualization and exploration platform.
-
-
-
- Vector database for AI and ML applications.
-
-
-
- Amazon Web Services cloud platform and AI services.
-
-
-
- Song lyrics database and search platform.
-
-
-
- Microsoft Azure AI and cognitive services.
-
-
-
- Beijing Academy of AI research and models.
-
-
-
- Vector database and semantic search platform.
-
-
-
- Multi-modal AI database and storage system.
-
-
-
- Chinese language model from Baichuan AI.
-
-
-
- Baidu's AI services and language models.
-
-
-
- Serverless GPU infrastructure for ML models.
-
-
-
- ML model deployment and serving platform.
-
-
-
- Serverless GPU computing platform.
-
-
-
- HTML and XML parsing library for web scraping.
-
-
-
- Bibliography management and citation format.
-
-
-
- Chinese video sharing platform integration.
-
-
-
- Decentralized AI network and incentive protocol.
-
-
-
- Educational technology and learning management.
-
-
-
- High-performance analytics and data processing.
-
-
-
- AI-powered reading and research assistant.
-
-
-
- Cloud content management and collaboration.
-
-
-
- Privacy-focused search engine API.
-
-
-
- AI knowledge management and retrieval platform.
-
-
-
- Web data platform and proxy services.
-
-
-
- Headless browser automation platform.
-
-
-
- Serverless browser automation service.
-
-
-
- ByteDance's AI models and services.
-
-
-
- Distributed NoSQL database management system.
-
-
-
- AI compute platform with specialized processors.
-
-
-
- Serverless GPU platform for AI applications.
-
-
-
- No-code AI chatbot and automation platform.
-
-
-
- Open-source embedding database for AI apps.
-
-
-
- Computer vision and AI model platform.
-
-
-
- ML experiment tracking and automation.
-
-
-
- Fast columnar database for analytics.
-
-
-
- Project management and productivity platform.
-
-
-
- Web infrastructure and security services.
-
-
-
- Naver's AI assistant and NLP platform.
-
-
-
- Time series database for IoT and analytics.
-
-
-
- Memory layer for AI applications and agents.
-
-
-
- AI knowledge management and retrieval system.
-
-
-
- Language AI platform for enterprise applications.
-
-
-
- College admissions and education platform.
-
-
-
- ML experiment tracking and model management.
-
-
-
- AI observability and monitoring platform.
-
-
-
- Team collaboration and documentation platform.
-
-
-
- Plugin system for AI agents and applications.
-
-
-
- Context management for AI applications.
-
-
-
- Contextual AI and language understanding.
-
-
-
- NoSQL cloud database platform.
-
-
-
- Conversational AI platform and chatbot builder.
-
-
-
- Distributed SQL database for machine data.
-
-
-
- Python bindings for transformer models in C/C++.
-
-
-
- Fast inference engine for Transformer models.
-
-
-
- Semantic layer for building data applications.
-
-
-
- Real-time AI data platform and API.
-
-
-
- Alibaba Cloud's vector database service.
-
-
-
- Unified analytics platform for big data and ML.
-
-
-
- Monitoring and analytics platform for applications.
-
-
-
- Log management and analysis platform.
-
-
-
- SEO and SERP data API platform.
-
-
-
- Natural language to SQL query platform.
-
-
-
- Document analysis and structure detection.
-
-
-
- Serverless inference for deep learning models.
-
-
-
- Vector database for deep learning applications.
-
-
-
- Advanced reasoning and coding AI models.
-
-
-
- Inference runtime for sparse neural networks.
-
-
-
- Dell Technologies AI and computing solutions.
-
-
-
- Web data extraction and knowledge graph.
-
-
-
- Distributed vector database system.
-
-
-
- Communication platform integration and bots.
-
-
-
- Discord analytics and moderation tools.
-
-
-
- Data structure for multimodal AI applications.
-
-
-
- Document processing and AI integration.
-
-
-
- Document transformation and processing.
-
-
-
- Document AI and semantic processing.
-
-
-
- Documentation website generator and platform.
-
-
-
- Decentralized knowledge retrieval network.
-
-
-
- Cloud storage and file sharing platform.
-
-
-
- In-process SQL OLAP database management system.
-
-
-
- Privacy-focused search engine integration.
-
-
-
- Cloud development environment platform.
-
-
-
- Unified API for multiple AI services.
-
-
-
- Distributed search and analytics engine.
-
-
-
- AI voice synthesis and speech platform.
-
-
-
- Framework for creating RAG applications.
-
-
-
- Vector database for AI and ML applications.
-
-
-
- Ethereum blockchain explorer and analytics.
-
-
-
- Serverless AI inference platform.
-
-
-
- Note-taking and organization platform.
-
-
-
- AI-powered search engine for developers.
-
-
-
- Meta's social platform integration and APIs.
-
-
-
- Graph database with ultra-low latency.
-
-
-
- Serverless, globally distributed database.
-
-
-
- Fast and efficient AI model serving.
-
-
-
- AI observability and monitoring platform.
-
-
-
- Design collaboration and prototyping platform.
-
-
-
- Web scraping and crawling API service.
-
-
-
- Fast inference platform for open-source models.
-
-
-
- Workflow orchestration for ML and data processing.
-
-
-
- Financial market data and analytics API.
-
-
-
- Fine-tuning platform for language models.
-
-
-
- Optimized serving engine for AI models.
-
-
-
- Prompt-driven engineering assistant.
-
-
-
- Knowledge extraction and NLP platform.
-
-
-
- Geographic data analysis with Python.
-
-
-
- Version control system integration.
-
-
-
- Documentation platform and knowledge base.
-
-
-
- Code hosting and collaboration platform.
-
-
-
- DevOps platform and code repository.
-
-
-
- Tool use framework for AI agents.
-
-
-
- Knowledge graph and data platform.
-
-
-
- Interpretable AI and model analysis.
-
-
-
- Google's AI services and cloud platform.
-
-
-
- Google Search API service.
-
-
-
- Fully managed NLP-as-a-Service platform.
-
-
-
- Open-source LLM ecosystem for local deployment.
-
-
-
- AI model training and deployment platform.
-
-
-
- Private AI model training platform.
-
-
-
- Graph-based retrieval augmented generation.
-
-
-
- AI observability and monitoring platform.
-
-
-
- Sustainable AI computing platform.
-
-
-
- Machine learning library for bibliographic data.
-
-
-
- Ultra-fast inference with specialized hardware.
-
-
-
- Project Gutenberg digital library access.
-
-
-
- Tech news and discussion platform.
-
-
-
- Machine learning research and tools.
-
-
-
- LLM observability and monitoring platform.
-
-
-
- Real-time interactive analytics service.
-
-
-
- HTML to plain text conversion utility.
-
-
-
- Huawei Cloud AI services and models.
-
-
-
- Open platform for ML models and datasets.
-
-
-
- Web automation and scraping platform.
-
-
-
- IBM Watson AI and enterprise solutions.
-
-
-
- Enterprise AI and system integration.
-
-
-
- Repair guides and technical documentation.
-
-
-
- Chinese speech and language AI platform.
-
-
-
- Internet Movie Script Database access.
-
-
-
- Distributed cache and data grid platform.
-
-
-
- High-performance embedding inference server.
-
-
-
- Observability and monitoring platform.
-
-
-
- Intel's AI optimization tools and libraries.
-
-
-
- Brazilian payment processing platform.
-
-
-
- Vector database and search platform.
-
-
-
- AI model gateway and management platform.
-
-
-
- Automation server and CI/CD platform.
-
-
-
- Neural search framework and cloud platform.
-
-
-
- Enterprise NLP and healthcare AI platform.
-
-
-
- Open-source note taking and organization.
-
-
-
- Time-series vector database platform.
-
-
-
- Real-time analytics and database platform.
-
-
-
- Browser-based AI writing assistant.
-
-
-
- Generative AI platform and model hosting.
-
-
-
- Korean natural language processing toolkit.
-
-
-
- Embedded graph database management system.
-
-
-
- Data labeling and annotation platform.
-
-
-
- Git-like version control for data lakes.
-
-
-
- Developer-friendly embedded vector database.
-
-
-
- Syntactic sugar and utilities for LangChain.
-
-
-
- Bias testing framework for language models.
-
-
-
- LLM engineering platform and observability.
-
-
-
- PostgreSQL vector database extension.
-
-
-
- Alibaba Cloud's multi-model database service.
-
-
-
- Real-time job market data and search.
-
-
-
- Unified interface for 100+ LLM APIs.
-
-
-
- Data framework for LLM applications.
-
-
-
- Port of Meta's LLaMA model in C/C++.
-
-
-
- Edge computing platform for LLaMA models.
-
-
-
- Single-file executable for running LLMs.
-
-
-
- Observability platform for LLM applications.
-
-
-
- Self-hosted OpenAI-compatible API server.
-
-
-
- LLM data management and observability.
-
-
-
- Open-source relational database management.
-
-
-
- Brazilian Portuguese language model.
-
-
-
- End-to-end vector search engine.
-
-
-
- Wikipedia and MediaWiki data processing.
-
-
-
- Lightning-fast search engine platform.
-
-
-
- Distributed memory caching system.
-
-
-
- Real-time graph database platform.
-
-
-
- Managed vector search and retrieval.
-
-
-
- Microsoft Azure AI and enterprise services.
-
-
-
- Open-source vector database for AI applications.
-
-
-
- AI layer for databases and data platforms.
-
-
-
- Chinese AI company's language models.
-
-
-
- Efficient open-source language models.
-
-
-
- ML lifecycle management platform.
-
-
-
- Experiment tracking and model registry.
-
-
-
- Apple's machine learning framework.
-
-
-
- Serverless cloud computing for data science.
-
-
-
- Alibaba's open-source model hub.
-
-
-
- Payment operations and treasury management.
-
-
-
- Serverless cache and vector index.
-
-
-
- Document-based NoSQL database platform.
-
-
-
- Cloud-hosted MongoDB with vector search.
-
-
-
- Serverless analytics with DuckDB in the cloud.
-
-
-
- Long-term memory for AI conversations.
-
-
-
- SQL-compatible vector database platform.
-
-
-
- Naver's AI services and language models.
-
-
-
- AI cloud platform and infrastructure.
-
-
-
- Native graph database and analytics platform.
-
-
-
- Decentralized AI computing network.
-
-
-
- Web intelligence and data extraction.
-
-
-
- Production-ready NLP API platform.
-
-
-
- Open-source embedding models and tools.
-
-
-
- All-in-one workspace and collaboration platform.
-
-
-
- AI-powered search and understanding platform.
-
-
-
- NVIDIA's AI computing platform and models.
-
-
-
- Connected note-taking and knowledge management.
-
-
-
- Distributed relational database system.
-
-
-
- Oracle Cloud Infrastructure AI services.
-
-
-
- Efficient AI compute and model serving.
-
-
-
- Run large language models locally.
-
-
-
- RDF database and semantic graph platform.
-
-
-
- GPT models and comprehensive AI platform.
-
-
-
- Safe, Open, High-Performance — PDF for AI
-
-
-
- AI model training and fine-tuning platform.
-
-
-
- Operating LLMs in production environment.
-
-
-
- Distributed search and analytics suite.
-
-
-
- Weather data and forecasting API.
-
-
-
- Oracle's AI and machine learning services.
-
-
-
- Team knowledge base and wiki platform.
-
-
-
- Structured generation for language models.
-
-
-
- Web scraping and proxy services.
-
-
-
- Data analysis and manipulation library.
-
-
-
- Real-time news and media monitoring.
-
-
-
- Authorization and access control platform.
-
-
-
- AI-powered search and reasoning engine.
-
-
-
- Distributed inference for large language models.
-
-
-
- PostgreSQL vector embedding extensions.
-
-
-
- Vector similarity search for PostgreSQL.
-
-
-
- Managed vector database for ML applications.
-
-
-
- ML pipeline and model deployment platform.
-
-
-
- AI-powered content moderation platform.
-
-
-
- AI gateway and observability platform.
-
-
-
- Fine-tuning platform for large language models.
-
-
-
- AI model security and compliance platform.
-
-
-
- AI platform for model deployment and management.
-
-
-
- Logic programming language integration.
-
-
-
- Prompt engineering and observability platform.
-
-
-
- Universal API for SaaS integrations.
-
-
-
- Biomedical literature database access.
-
-
-
- Markdown content extraction and processing.
-
-
-
- Conversational AI model platform.
-
-
-
- PDF processing optimized for LLM ingestion.
-
-
-
- Vector similarity search engine.
-
-
-
- RAG toolkit with ColBERT indexing.
-
-
-
- BM25 ranking algorithm implementation.
-
-
-
- Scalable model serving framework.
-
-
-
- Prompt injection detection and prevention.
-
-
-
- Social media platform integration and APIs.
-
-
-
- In-memory data structure store and cache.
-
-
-
- AI memory and context management.
-
-
-
- Cloud platform for running ML models.
-
-
-
- Research and note-taking platform.
-
-
-
- Python automation and RPA platform.
-
-
-
- Real-time analytics database platform.
-
-
-
- GPU cloud platform for AI workloads.
-
-
-
- CRM platform and business automation.
-
-
-
- AI platform with specialized hardware.
-
-
-
- Enterprise software and AI solutions.
-
-
-
- AI-powered web scraping framework.
-
-
-
- Web scraping API and proxy service.
-
-
-
- Real-time search engine results API.
-
-
-
- Privacy-respecting metasearch engine.
-
-
-
- Vector database for semantic search.
-
-
-
- Google Search results scraping API.
-
-
-
- Decentralized AI inference protocol.
-
-
-
- Distributed database with vector capabilities.
-
-
-
- Machine learning library for Python.
-
-
-
- Business communication and collaboration.
-
-
-
- Cloud data platform and analytics.
-
-
-
- Industrial-strength NLP library.
-
-
-
- Unified analytics engine for big data.
-
-
-
- iFlytek's multilingual language model.
-
-
-
- Payment orchestration platform.
-
-
-
- Embedded relational database engine.
-
-
-
- Q&A platform network integration.
-
-
-
- High-performance analytical database.
-
-
-
- GPU cloud platform for ML acceleration.
-
-
-
- Web app framework for data science.
-
-
-
- Online payment processing platform.
-
-
-
- Open-source Firebase alternative.
-
-
-
- Multi-model database for modern applications.
-
-
-
- Conversation intelligence platform.
-
-
-
- Data visualization and business intelligence.
-
-
-
- Project management platform for agile teams.
-
-
-
- Alibaba Cloud's in-memory database.
-
-
-
- AI-optimized search API for applications.
-
-
-
- Messaging platform and bot integration.
-
-
-
- Tencent Cloud AI services and models.
-
-
-
- Collection of ready-to-use datasets.
-
-
-
- Data infrastructure for ML applications.
-
-
-
- Distributed SQL database platform.
-
-
-
- Scalable graph database and analytics.
-
-
-
- Globally distributed database platform.
-
-
-
- Entity resolution and data matching.
-
-
-
- Fast inference for open-source models.
-
-
-
- HTML to Markdown conversion utility.
-
-
-
- Extended toolkit for LangChain applications.
-
-
-
- Big data platform and analytics suite.
-
-
-
- Visual project management and collaboration.
-
-
-
- LLM evaluation and analytics platform.
-
-
-
- ML platform for model deployment.
-
-
-
- Evaluation framework for LLM applications.
-
-
-
- Social media platform integration.
-
-
-
- Fast and typo-tolerant search engine.
-
-
-
- Data extraction and processing platform.
-
-
-
- Document processing and data extraction.
-
-
-
- Document AI and OCR platform.
-
-
-
- Serverless data platform for Redis and Kafka.
-
-
-
- ML observability and evaluation platform.
-
-
-
- Single-file vector search engine.
-
-
-
- AI platform for healthcare applications.
-
-
-
- AI-powered data analysis platform.
-
-
-
- Visual data management system.
-
-
-
- Distributed vector search engine.
-
-
-
- Neural search platform with built-in understanding.
-
-
-
- Vector database and semantic search.
-
-
-
- Big data serving engine for vector search.
-
-
-
- Simple vector database for embeddings.
-
-
-
- Embedding models and semantic search.
-
-
-
- ML experiment tracking and collaboration.
-
-
-
- Experiment tracking and model management.
-
-
-
- LLM tracing and observability.
-
-
-
- Weather data and forecasting services.
-
-
-
- Open-source vector database with GraphQL.
-
-
-
- Messaging platform integration and automation.
-
-
-
- AI observability and data monitoring.
-
-
-
- Wikipedia content access and search.
-
-
-
- Computational knowledge engine.
-
-
-
- Enterprise AI writing platform.
-
-
-
- xAI's Grok models for conversational AI.
-
-
-
- Serverless database with vector search.
-
-
-
- Distributed inference framework for LLMs.
-
-
-
- Yahoo services and data integration.
-
-
-
- Yandex AI services and language models.
-
-
-
- Yandex Database distributed storage system.
-
-
-
- AI agent framework and development platform.
-
-
-
- Data warehouse and analytics platform.
-
-
-
- 01.AI's bilingual language models.
-
-
-
- You.com search engine and AI platform.
-
-
-
- Video platform integration and content access.
-
-
-
- Long-term memory for AI assistants.
-
-
-
- High-performance vector database.
-
-
-
- ChatGLM and other Chinese language models.
-
-
-
- Managed Milvus vector database service.
-
-
-
- Reference management and research tool.
-
+
+ Custom AI integration platform for enterprise workflows.
+
+
+
+ Knowledge management platform with AI-powered organization.
+
+
+
+ Vector database for AI applications with deep learning focus.
+
+
+
+ Advertising platform for GPT applications and AI services.
+
+
+
+ Web scraping with natural language queries.
+
+
+
+ AI21 Labs' Jurassic models for text generation.
+
+
+
+ Experiment tracking and management platform.
+
+
+
+ Unified API for multiple AI and ML services.
+
+
+
+ Decentralized AI computing network platform.
+
+
+
+ Data integration platform for ETL and ELT pipelines.
+
+
+
+ Cloud-based spreadsheet and database platform.
+
+
+
+ Blockchain development platform and APIs.
+
+
+
+ European AI company's multilingual language models.
+
+
+
+ Alibaba's cloud computing and AI services.
+
+
+
+ Alibaba Cloud's real-time analytics database.
+
+
+
+ Browser automation and web scraping tools.
+
+
+
+ Approximate nearest neighbors search library.
+
+
+
+ Claude models for advanced reasoning and conversation.
+
+
+
+ Distributed computing platform for ML workloads.
+
+
+
+ Real-time analytical database management system.
+
+
+
+ Apache Software Foundation tools and libraries.
+
+
+
+ Web scraping and automation platform.
+
+
+
+ Apple's machine learning and AI frameworks.
+
+
+
+ Multi-model database with graph capabilities.
+
+
+
+ Domain-specific language model training platform.
+
+
+
+ Geographic information system platform.
+
+
+
+ Data labeling and annotation platform for NLP.
+
+
+
+ ML observability and performance monitoring.
+
+
+
+ AI model monitoring and governance platform.
+
+
+
+ Academic paper repository and search platform.
+
+
+
+ Data engineering and pipeline automation platform.
+
+
+
+ Real-time news search and analysis API.
+
+
+
+ Speech-to-text and audio intelligence API.
+
+
+
+ DataStax Astra DB vector database platform.
+
+
+
+ Data visualization and exploration platform.
+
+
+
+ Vector database for AI and ML applications.
+
+
+
+ Amazon Web Services cloud platform and AI services.
+
+
+
+ Song lyrics database and search platform.
+
+
+
+ Microsoft Azure AI and cognitive services.
+
+
+
+ Beijing Academy of AI research and models.
+
+
+
+ Vector database and semantic search platform.
+
+
+
+ Multi-modal AI database and storage system.
+
+
+
+ Chinese language model from Baichuan AI.
+
+
+
+ Baidu's AI services and language models.
+
+
+
+ Serverless GPU infrastructure for ML models.
+
+
+
+ ML model deployment and serving platform.
+
+
+
+ Serverless GPU computing platform.
+
+
+
+ HTML and XML parsing library for web scraping.
+
+
+
+ Bibliography management and citation format.
+
+
+
+ Chinese video sharing platform integration.
+
+
+
+ Decentralized AI network and incentive protocol.
+
+
+
+ Educational technology and learning management.
+
+
+
+ High-performance analytics and data processing.
+
+
+
+ AI-powered reading and research assistant.
+
+
+
+ Cloud content management and collaboration.
+
+
+
+ Privacy-focused search engine API.
+
+
+
+ AI knowledge management and retrieval platform.
+
+
+
+ Web data platform and proxy services.
+
+
+
+ Headless browser automation platform.
+
+
+
+ Serverless browser automation service.
+
+
+
+ ByteDance's AI models and services.
+
+
+
+ Distributed NoSQL database management system.
+
+
+
+ AI compute platform with specialized processors.
+
+
+
+ Serverless GPU platform for AI applications.
+
+
+
+ No-code AI chatbot and automation platform.
+
+
+
+ Open-source embedding database for AI apps.
+
+
+
+ Computer vision and AI model platform.
+
+
+
+ ML experiment tracking and automation.
+
+
+
+ Fast columnar database for analytics.
+
+
+
+ Project management and productivity platform.
+
+
+
+ Web infrastructure and security services.
+
+
+
+ Naver's AI assistant and NLP platform.
+
+
+
+ Time series database for IoT and analytics.
+
+
+
+ Memory layer for AI applications and agents.
+
+
+
+ AI knowledge management and retrieval system.
+
+
+
+ Language AI platform for enterprise applications.
+
+
+
+ College admissions and education platform.
+
+
+
+ ML experiment tracking and model management.
+
+
+
+ AI observability and monitoring platform.
+
+
+
+ Team collaboration and documentation platform.
+
+
+
+ Plugin system for AI agents and applications.
+
+
+
+ Context management for AI applications.
+
+
+
+ Contextual AI and language understanding.
+
+
+
+ NoSQL cloud database platform.
+
+
+
+ Conversational AI platform and chatbot builder.
+
+
+
+ Distributed SQL database for machine data.
+
+
+
+ Python bindings for transformer models in C/C++.
+
+
+
+ Fast inference engine for Transformer models.
+
+
+
+ Semantic layer for building data applications.
+
+
+
+ Real-time AI data platform and API.
+
+
+
+ Alibaba Cloud's vector database service.
+
+
+
+ Unified analytics platform for big data and ML.
+
+
+
+ Monitoring and analytics platform for applications.
+
+
+
+ Log management and analysis platform.
+
+
+
+ SEO and SERP data API platform.
+
+
+
+ Natural language to SQL query platform.
+
+
+
+ Document analysis and structure detection.
+
+
+
+ Serverless inference for deep learning models.
+
+
+
+ Vector database for deep learning applications.
+
+
+
+ Advanced reasoning and coding AI models.
+
+
+
+ Inference runtime for sparse neural networks.
+
+
+
+ Dell Technologies AI and computing solutions.
+
+
+
+ Web data extraction and knowledge graph.
+
+
+
+ Distributed vector database system.
+
+
+
+ Communication platform integration and bots.
+
+
+
+ Discord analytics and moderation tools.
+
+
+
+ Data structure for multimodal AI applications.
+
+
+
+ Document processing and AI integration.
+
+
+
+ Document transformation and processing.
+
+
+
+ Document AI and semantic processing.
+
+
+
+ Documentation website generator and platform.
+
+
+
+ Decentralized knowledge retrieval network.
+
+
+
+ Cloud storage and file sharing platform.
+
+
+
+ In-process SQL OLAP database management system.
+
+
+
+ Privacy-focused search engine integration.
+
+
+
+ Cloud development environment platform.
+
+
+
+ Unified API for multiple AI services.
+
+
+
+ Distributed search and analytics engine.
+
+
+
+ AI voice synthesis and speech platform.
+
+
+
+ Framework for creating RAG applications.
+
+
+
+ Vector database for AI and ML applications.
+
+
+
+ Ethereum blockchain explorer and analytics.
+
+
+
+ Serverless AI inference platform.
+
+
+
+ Note-taking and organization platform.
+
+
+
+ AI-powered search engine for developers.
+
+
+
+ Meta's social platform integration and APIs.
+
+
+
+ Graph database with ultra-low latency.
+
+
+
+ Serverless, globally distributed database.
+
+
+
+ Fast and efficient AI model serving.
+
+
+
+ AI observability and monitoring platform.
+
+
+
+ Design collaboration and prototyping platform.
+
+
+
+ Web scraping and crawling API service.
+
+
+
+ Fast inference platform for open-source models.
+
+
+
+ Workflow orchestration for ML and data processing.
+
+
+
+ Financial market data and analytics API.
+
+
+
+ Fine-tuning platform for language models.
+
+
+
+ Optimized serving engine for AI models.
+
+
+
+ Prompt-driven engineering assistant.
+
+
+
+ Knowledge extraction and NLP platform.
+
+
+
+ Geographic data analysis with Python.
+
+
+
+ Version control system integration.
+
+
+
+ Documentation platform and knowledge base.
+
+
+
+ Code hosting and collaboration platform.
+
+
+
+ DevOps platform and code repository.
+
+
+
+ Tool use framework for AI agents.
+
+
+
+ Knowledge graph and data platform.
+
+
+
+ Interpretable AI and model analysis.
+
+
+
+ Google's AI services and cloud platform.
+
+
+
+ Google Search API service.
+
+
+
+ Fully managed NLP-as-a-Service platform.
+
+
+
+ Open-source LLM ecosystem for local deployment.
+
+
+
+ AI model training and deployment platform.
+
+
+
+ Private AI model training platform.
+
+
+
+ Graph-based retrieval augmented generation.
+
+
+
+ AI observability and monitoring platform.
+
+
+
+ Sustainable AI computing platform.
+
+
+
+ Machine learning library for bibliographic data.
+
+
+
+ Ultra-fast inference with specialized hardware.
+
+
+
+ Project Gutenberg digital library access.
+
+
+
+ Tech news and discussion platform.
+
+
+
+ Machine learning research and tools.
+
+
+
+ LLM observability and monitoring platform.
+
+
+
+ Real-time interactive analytics service.
+
+
+
+ HTML to plain text conversion utility.
+
+
+
+ Huawei Cloud AI services and models.
+
+
+
+ Open platform for ML models and datasets.
+
+
+
+ Web automation and scraping platform.
+
+
+
+ IBM Watson AI and enterprise solutions.
+
+
+
+ Enterprise AI and system integration.
+
+
+
+ Repair guides and technical documentation.
+
+
+
+ Chinese speech and language AI platform.
+
+
+
+ Internet Movie Script Database access.
+
+
+
+ Distributed cache and data grid platform.
+
+
+
+ High-performance embedding inference server.
+
+
+
+ Observability and monitoring platform.
+
+
+
+ Intel's AI optimization tools and libraries.
+
+
+
+ Brazilian payment processing platform.
+
+
+
+ Vector database and search platform.
+
+
+
+ AI model gateway and management platform.
+
+
+
+ Automation server and CI/CD platform.
+
+
+
+ Neural search framework and cloud platform.
+
+
+
+ Enterprise NLP and healthcare AI platform.
+
+
+
+ Open-source note taking and organization.
+
+
+
+ Time-series vector database platform.
+
+
+
+ Real-time analytics and database platform.
+
+
+
+ Browser-based AI writing assistant.
+
+
+
+ Generative AI platform and model hosting.
+
+
+
+ Korean natural language processing toolkit.
+
+
+
+ Embedded graph database management system.
+
+
+
+ Data labeling and annotation platform.
+
+
+
+ Git-like version control for data lakes.
+
+
+
+ Developer-friendly embedded vector database.
+
+
+
+ Syntactic sugar and utilities for LangChain.
+
+
+
+ Bias testing framework for language models.
+
+
+
+ LLM engineering platform and observability.
+
+
+
+ PostgreSQL vector database extension.
+
+
+
+ Alibaba Cloud's multi-model database service.
+
+
+
+ Real-time job market data and search.
+
+
+
+ Unified interface for 100+ LLM APIs.
+
+
+
+ Data framework for LLM applications.
+
+
+
+ Port of Meta's LLaMA model in C/C++.
+
+
+
+ Edge computing platform for LLaMA models.
+
+
+
+ Single-file executable for running LLMs.
+
+
+
+ Observability platform for LLM applications.
+
+
+
+ Self-hosted OpenAI-compatible API server.
+
+
+
+ LLM data management and observability.
+
+
+
+ Open-source relational database management.
+
+
+
+ Brazilian Portuguese language model.
+
+
+
+ End-to-end vector search engine.
+
+
+
+ Wikipedia and MediaWiki data processing.
+
+
+
+ Lightning-fast search engine platform.
+
+
+
+ Distributed memory caching system.
+
+
+
+ Real-time graph database platform.
+
+
+
+ Managed vector search and retrieval.
+
+
+
+ Microsoft Azure AI and enterprise services.
+
+
+
+ Open-source vector database for AI applications.
+
+
+
+ AI layer for databases and data platforms.
+
+
+
+ Chinese AI company's language models.
+
+
+
+ Efficient open-source language models.
+
+
+
+ ML lifecycle management platform.
+
+
+
+ Experiment tracking and model registry.
+
+
+
+ Apple's machine learning framework.
+
+
+
+ Serverless cloud computing for data science.
+
+
+
+ Alibaba's open-source model hub.
+
+
+
+ Payment operations and treasury management.
+
+
+
+ Serverless cache and vector index.
+
+
+
+ Document-based NoSQL database platform.
+
+
+
+ Cloud-hosted MongoDB with vector search.
+
+
+
+ Serverless analytics with DuckDB in the cloud.
+
+
+
+ Long-term memory for AI conversations.
+
+
+
+ SQL-compatible vector database platform.
+
+
+
+ Naver's AI services and language models.
+
+
+
+ AI cloud platform and infrastructure.
+
+
+
+ Native graph database and analytics platform.
+
+
+
+ Decentralized AI computing network.
+
+
+
+ Web intelligence and data extraction.
+
+
+
+ Production-ready NLP API platform.
+
+
+
+ Open-source embedding models and tools.
+
+
+
+ All-in-one workspace and collaboration platform.
+
+
+
+ AI-powered search and understanding platform.
+
+
+
+ NVIDIA's AI computing platform and models.
+
+
+
+ Connected note-taking and knowledge management.
+
+
+
+ Distributed relational database system.
+
+
+
+ Oracle Cloud Infrastructure AI services.
+
+
+
+ Efficient AI compute and model serving.
+
+
+
+ Run large language models locally.
+
+
+
+ RDF database and semantic graph platform.
+
+
+
+ GPT models and comprehensive AI platform.
+
+
+
+ Safe, Open, High-Performance — PDF for AI
+
+
+
+ AI model training and fine-tuning platform.
+
+
+
+ Operating LLMs in production environment.
+
+
+
+ Distributed search and analytics suite.
+
+
+
+ Weather data and forecasting API.
+
+
+
+ Oracle's AI and machine learning services.
+
+
+
+ Team knowledge base and wiki platform.
+
+
+
+ Structured generation for language models.
+
+
+
+ Web scraping and proxy services.
+
+
+
+ Data analysis and manipulation library.
+
+
+
+ Payment processing and financial tools.
+
+
+
+ Real-time news and media monitoring.
+
+
+
+ Authorization and access control platform.
+
+
+
+ AI-powered search and reasoning engine.
+
+
+
+ Distributed inference for large language models.
+
+
+
+ PostgreSQL vector embedding extensions.
+
+
+
+ Vector similarity search for PostgreSQL.
+
+
+
+ Managed vector database for ML applications.
+
+
+
+ ML pipeline and model deployment platform.
+
+
+
+ AI-powered content moderation platform.
+
+
+
+ AI gateway and observability platform.
+
+
+
+ Fine-tuning platform for large language models.
+
+
+
+ AI model security and compliance platform.
+
+
+
+ AI platform for model deployment and management.
+
+
+
+ Logic programming language integration.
+
+
+
+ Prompt engineering and observability platform.
+
+
+
+ Universal API for SaaS integrations.
+
+
+
+ Biomedical literature database access.
+
+
+
+ Markdown content extraction and processing.
+
+
+
+ Conversational AI model platform.
+
+
+
+ PDF processing optimized for LLM ingestion.
+
+
+
+ Vector similarity search engine.
+
+
+
+ RAG toolkit with ColBERT indexing.
+
+
+
+ BM25 ranking algorithm implementation.
+
+
+
+ Scalable model serving framework.
+
+
+
+ Prompt injection detection and prevention.
+
+
+
+ Social media platform integration and APIs.
+
+
+
+ In-memory data structure store and cache.
+
+
+
+ AI memory and context management.
+
+
+
+ Cloud platform for running ML models.
+
+
+
+ Research and note-taking platform.
+
+
+
+ Python automation and RPA platform.
+
+
+
+ Real-time analytics database platform.
+
+
+
+ GPU cloud platform for AI workloads.
+
+
+
+ CRM platform and business automation.
+
+
+
+ AI platform with specialized hardware.
+
+
+
+ Enterprise software and AI solutions.
+
+
+
+ AI-powered web scraping framework.
+
+
+
+ Web scraping API and proxy service.
+
+
+
+ Real-time search engine results API.
+
+
+
+ Privacy-respecting metasearch engine.
+
+
+
+ Vector database for semantic search.
+
+
+
+ Google Search results scraping API.
+
+
+
+ Decentralized AI inference protocol.
+
+
+
+ Distributed database with vector capabilities.
+
+
+
+ Machine learning library for Python.
+
+
+
+ Business communication and collaboration.
+
+
+
+ Cloud data platform and analytics.
+
+
+
+ Industrial-strength NLP library.
+
+
+
+ Unified analytics engine for big data.
+
+
+
+ iFlytek's multilingual language model.
+
+
+
+ Payment orchestration platform.
+
+
+
+ Embedded relational database engine.
+
+
+
+ Q&A platform network integration.
+
+
+
+ High-performance analytical database.
+
+
+
+ GPU cloud platform for ML acceleration.
+
+
+
+ Web app framework for data science.
+
+
+
+ Online payment processing platform.
+
+
+
+ Open-source Firebase alternative.
+
+
+
+ Context-aware retrieval using multiple space types.
+
+
+
+ Multi-model database for modern applications.
+
+
+
+ Conversation intelligence platform.
+
+
+
+ Data visualization and business intelligence.
+
+
+
+ Project management platform for agile teams.
+
+
+
+ Alibaba Cloud's in-memory database.
+
+
+
+ AI-optimized search API for applications.
+
+
+
+ Messaging platform and bot integration.
+
+
+
+ Tencent Cloud AI services and models.
+
+
+
+ Collection of ready-to-use datasets.
+
+
+
+ Data infrastructure for ML applications.
+
+
+
+ Distributed SQL database platform.
+
+
+
+ Scalable graph database and analytics.
+
+
+
+ Globally distributed database platform.
+
+
+
+ Entity resolution and data matching.
+
+
+
+ Fast inference for open-source models.
+
+
+
+ HTML to Markdown conversion utility.
+
+
+
+ Extended toolkit for LangChain applications.
+
+
+
+ Big data platform and analytics suite.
+
+
+
+ Visual project management and collaboration.
+
+
+
+ LLM evaluation and analytics platform.
+
+
+
+ ML platform for model deployment.
+
+
+
+ Evaluation framework for LLM applications.
+
+
+
+ Social media platform integration.
+
+
+
+ Fast and typo-tolerant search engine.
+
+
+
+ Data extraction and processing platform.
+
+
+
+ Document processing and data extraction.
+
+
+
+ Document AI and OCR platform.
+
+
+
+ Serverless data platform for Redis and Kafka.
+
+
+
+ ML observability and evaluation platform.
+
+
+
+ Single-file vector search engine.
+
+
+
+ AI platform for healthcare applications.
+
+
+
+ AI-powered data analysis platform.
+
+
+
+ Visual data management system.
+
+
+
+ Distributed vector search engine.
+
+
+
+ Neural search platform with built-in understanding.
+
+
+
+ Vector database and semantic search.
+
+
+
+ Big data serving engine for vector search.
+
+
+
+ Simple vector database for embeddings.
+
+
+
+ Embedding models and semantic search.
+
+
+
+ ML experiment tracking and collaboration.
+
+
+
+ Experiment tracking and model management.
+
+
+
+ LLM tracing and observability.
+
+
+
+ Weather data and forecasting services.
+
+
+
+ Open-source vector database with GraphQL.
+
+
+
+ Messaging platform integration and automation.
+
+
+
+ AI observability and data monitoring.
+
+
+
+ Wikipedia content access and search.
+
+
+
+ Computational knowledge engine.
+
+
+
+ Enterprise AI writing platform.
+
+
+
+ xAI's Grok models for conversational AI.
+
+
+
+ Serverless database with vector search.
+
+
+
+ Distributed inference framework for LLMs.
+
+
+
+ Yahoo services and data integration.
+
+
+
+ Yandex AI services and language models.
+
+
+
+ Yandex Database distributed storage system.
+
+
+
+ AI agent framework and development platform.
+
+
+
+ Data warehouse and analytics platform.
+
+
+
+ 01.AI's bilingual language models.
+
+
+
+ You.com search engine and AI platform.
+
+
+
+ Video platform integration and content access.
+
+
+
+ Long-term memory for AI assistants.
+
+
+
+ High-performance vector database.
+
+
+
+ ChatGLM and other Chinese language models.
+
+
+
+ Managed Milvus vector database service.
+
+
+
+ Reference management and research tool.
+
+
+
+## Chat Models
+
+
+
+ Custom AI chat integration platform.
+
+
+
+ AI21 Labs' Jurassic models for conversation.
+
+
+
+ Unified API for multiple chat models.
+
+
+
+ Alibaba Cloud's model serving platform.
+
+
+
+ Claude models for advanced reasoning.
+
+
+
+ Function calling with Claude models.
+
+
+
+ Microsoft Azure AI chat services.
+
+
+
+ OpenAI models through Azure platform.
+
+
+
+ Azure Machine Learning chat endpoints.
+
+
+
+ Baichuan AI's Chinese language models.
+
+
+
+ Baidu's Qianfan large model platform.
+
+
+
+ Foundation models through Amazon Bedrock.
+
+
+
+ Ultra-fast inference with Cerebras processors.
+
+
+
+ AI models on Cloudflare's edge platform.
+
+
+
+ Cohere's language models for conversation.
+
+
+
+ Context-aware conversational AI.
+
+
+
+ ByteDance's conversational AI platform.
+
+
+
+ Real-time AI data platform.
+
+
+
+ Foundation models on Databricks platform.
+
+
+
+ Serverless inference for chat models.
+
+
+
+ Advanced reasoning and coding models.
+
+
+
+ Unified API for multiple chat providers.
+
+
+
+ Baidu's ERNIE language model.
+
+
+
+ Serverless AI inference platform.
+
+
+
+ Optimized model serving platform.
+
+
+
+ Fast inference for open-source models.
+
+
+
+ Optimized serving engine for chat models.
+
+
+
+ Interpretable AI chat models.
+
+
+
+ Google's Gemini models for conversation.
+
+
+
+ Enterprise AI platform with PaLM models.
+
+
+
+ Route requests across multiple GPT providers.
+
+
+
+ Private AI model training and chat.
+
+
+
+ Sustainable AI computing platform.
+
+
+
+ Ultra-fast inference with specialized hardware.
+
+
+
+ Open-source models via Hugging Face.
+
+
+
+ IBM's enterprise AI foundation models.
+
+
+
+ Jina's conversational AI models.
+
+
+
+ Real-time analytics with chat interface.
+
+
+
+ Generative AI platform for chat models.
+
+
+
+ Unified interface for 100+ chat APIs.
+
+
+
+ Hosted Llama models via API.
+
+
+
+ Edge computing for Llama models.
+
+
+
+ Meta's Llama 2 chat models.
+
+
+
+ Local inference with llama.cpp.
+
+
+
+ Brazilian Portuguese conversational AI.
+
+
+
+ Chinese AI company's chat models.
+
+
+
+ Mistral's efficient language models.
+
+
+
+ Apple's machine learning framework.
+
+
+
+ Alibaba's model hub chat interface.
+
+
+
+ Moonshot AI's conversational models.
+
+
+
+ Naver's HyperCLOVA language models.
+
+
+
+ AI cloud platform for chat models.
+
+
+
+ Decentralized AI computing network.
+
+
+
+ NVIDIA's foundation model endpoints.
+
+
+
+ Oracle Cloud Infrastructure data science.
+
+
+
+ Oracle's generative AI services.
+
+
+
+ Efficient AI compute and model serving.
+
+
+
+ Run large language models locally.
+
+
+
+ GPT models and OpenAI's chat platform.
+
+
+
+ Structured generation for language models.
+
+
+
+ AI-powered search and reasoning.
+
+
+
+ AI content moderation platform.
+
+
+
+ Secure and compliant AI models.
+
+
+
+ AI platform for model deployment.
+
+
+
+ OpenAI with PromptLayer observability.
+
+
+
+ Alibaba's Qwen language models.
+
+
+
+ Alibaba's reasoning-focused model.
+
+
+
+ Multimodal AI models from Reka.
+
+
+
+ GPU cloud platform for chat models.
+
+
+
+ AI platform with specialized hardware.
+
+
+
+ SambaNova's enterprise AI platform.
+
+
+
+ AI workflow and automation platform.
+
+
+
+ AI models on Snowflake data platform.
+
+
+
+ iFlytek's Spark language models.
+
+
+
+ Conversation intelligence platform.
+
+
+
+ Tencent's Hunyuan language models.
+
+
+
+ Fast inference for open-source models.
+
+
+
+ Alibaba's Tongyi Qianwen models.
+
+
+
+ Document AI and chat models.
+
+
+
+ Fast and memory-efficient inference.
+
+
+
+ ByteDance's model-as-a-service platform.
+
+
+
+ Enterprise AI writing platform.
+
+
+
+ xAI's Grok models for conversation.
+
+
+
+ Distributed inference framework.
+
+
+
+ Yandex's language models and AI.
+
+
+
+ 01.AI's bilingual language models.
+
+
+
+ IEIT Systems' Yuan 2.0 models.
+
+
+
+ ChatGLM and other Chinese models.
+
diff --git a/src/oss/python/integrations/providers/overview.mdx b/src/oss/python/integrations/providers/overview.mdx
index 577ccbe59..db2cac159 100644
--- a/src/oss/python/integrations/providers/overview.mdx
+++ b/src/oss/python/integrations/providers/overview.mdx
@@ -12,7 +12,7 @@ LangChain Python offers an extensive ecosystem with 1000+ integrations across ch
Set up your project with our quickstart guide.
-
+
Explore endpoints, parameters, and examples for your API.
diff --git a/src/oss/python/integrations/providers/superlinked.mdx b/src/oss/python/integrations/providers/superlinked.mdx
new file mode 100644
index 000000000..656aae984
--- /dev/null
+++ b/src/oss/python/integrations/providers/superlinked.mdx
@@ -0,0 +1,136 @@
+---
+description: LangChain integration package for the Superlinked retrieval stack
+title: Superlinked
+---
+
+### Overview
+
+Superlinked enables context-aware retrieval using multiple space types (text similarity, categorical, numerical, recency, and more). The `langchain-superlinked` package provides a LangChain-native `SuperlinkedRetriever` that plugs directly into your RAG chains.
+
+### Links
+
+- [Integration repository](https://github.com/superlinked/langchain-superlinked)
+- [Superlinked core repository](https://links.superlinked.com/langchain_repo_sl)
+- [Article: Build RAG using LangChain & Superlinked](https://links.superlinked.com/langchain_article)
+
+### Install
+
+```bash
+pip install -U langchain-superlinked superlinked
+```
+
+### Quickstart
+
+```python
+import superlinked.framework as sl
+from langchain_superlinked import SuperlinkedRetriever
+
+# 1) Define schema
+class DocumentSchema(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+doc_schema = DocumentSchema()
+
+# 2) Define space and index
+text_space = sl.TextSimilaritySpace(
+ text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+)
+doc_index = sl.Index([text_space])
+
+# 3) Define query
+query = (
+ sl.Query(doc_index)
+ .find(doc_schema)
+ .similar(text_space.text, sl.Param("query_text"))
+ .select([doc_schema.content])
+ .limit(sl.Param("limit"))
+)
+
+# 4) Minimal app setup
+source = sl.InMemorySource(schema=doc_schema)
+executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])
+app = executor.run()
+source.put([
+ {"id": "1", "content": "Machine learning algorithms process data efficiently."},
+ {"id": "2", "content": "Natural language processing understands human language."},
+])
+
+# 5) LangChain retriever
+retriever = SuperlinkedRetriever(
+ sl_client=app, sl_query=query, page_content_field="content"
+)
+
+# Search
+docs = retriever.invoke("artificial intelligence", limit=2)
+for d in docs:
+ print(d.page_content)
+```
+
+### What the retriever expects (App and Query)
+
+The retriever takes two core inputs:
+
+- `sl_client`: a Superlinked App created by running an executor (e.g., `InMemoryExecutor(...).run()`)
+- `sl_query`: a `QueryDescriptor` returned by chaining `sl.Query(...).find(...).similar(...).select(...).limit(...)`
+
+Minimal setup:
+
+```python
+import superlinked.framework as sl
+from langchain_superlinked import SuperlinkedRetriever
+
+class Doc(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+doc = Doc()
+space = sl.TextSimilaritySpace(text=doc.content, model="sentence-transformers/all-MiniLM-L6-v2")
+index = sl.Index([space])
+
+query = (
+ sl.Query(index)
+ .find(doc)
+ .similar(space.text, sl.Param("query_text"))
+ .select([doc.content])
+ .limit(sl.Param("limit"))
+)
+
+source = sl.InMemorySource(schema=doc)
+app = sl.InMemoryExecutor(sources=[source], indices=[index]).run()
+
+retriever = SuperlinkedRetriever(sl_client=app, sl_query=query, page_content_field="content")
+```
+
+Note: For a persistent vector DB, pass `vector_database=...` to the executor (e.g., Qdrant) before `.run()`.
+
+### Use within a chain
+
+```python
+from langchain_core.runnables import RunnablePassthrough
+from langchain_core.prompts import ChatPromptTemplate
+from langchain_openai import ChatOpenAI
+
+def format_docs(docs):
+ return "\n\n".join(doc.page_content for doc in docs)
+
+prompt = ChatPromptTemplate.from_template(
+ """
+ Answer based on context:\n\nContext: {context}\nQuestion: {question}
+ """
+)
+
+chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}
+ | prompt
+ | ChatOpenAI())
+
+answer = chain.invoke("How does machine learning work?")
+```
+
+### Resources
+
+- [PyPI: langchain-superlinked](https://pypi.org/project/langchain-superlinked/)
+- [PyPI: superlinked](https://pypi.org/project/superlinked/)
+- [Source repository](https://github.com/superlinked/langchain-superlinked)
+- [Superlinked core repository](https://links.superlinked.com/langchain_repo_sl)
+- [Build RAG using LangChain & Superlinked (article)](https://links.superlinked.com/langchain_article)
diff --git a/src/oss/python/integrations/retrievers/index.mdx b/src/oss/python/integrations/retrievers/index.mdx
index 69bc44af3..2f7832791 100644
--- a/src/oss/python/integrations/retrievers/index.mdx
+++ b/src/oss/python/integrations/retrievers/index.mdx
@@ -22,6 +22,7 @@ The below retrievers allow you to index and search a custom corpus of documents.
| [`AzureAISearchRetriever`](/oss/integrations/retrievers/azure_ai_search) | ❌ | ✅ | [`langchain-community`](https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.azure_ai_search.AzureAISearchRetriever.html) |
| [`ElasticsearchRetriever`](/oss/integrations/retrievers/elasticsearch_retriever) | ✅ | ✅ | [`langchain-elasticsearch`](https://python.langchain.com/api_reference/elasticsearch/retrievers/langchain_elasticsearch.retrievers.ElasticsearchRetriever.html) |
| [`VertexAISearchRetriever`](/oss/integrations/retrievers/google_vertex_ai_search) | ❌ | ✅ | [`langchain-google-community`](https://python.langchain.com/api_reference/google_community/vertex_ai_search/langchain_google_community.vertex_ai_search.VertexAISearchRetriever.html) |
+| [`SuperlinkedRetriever`](/oss/integrations/retrievers/superlinked) | ✅ | ❌ | [`langchain-superlinked`](https://python.langchain.com/api_reference/superlinked/retrievers/langchain_superlinked.retrievers.SuperlinkedRetriever.html) |
## External index
@@ -93,6 +94,7 @@ The below retrievers will search over an external index (e.g., constructed from
+
diff --git a/src/oss/python/integrations/retrievers/superlinked.mdx b/src/oss/python/integrations/retrievers/superlinked.mdx
new file mode 100644
index 000000000..c04234f27
--- /dev/null
+++ b/src/oss/python/integrations/retrievers/superlinked.mdx
@@ -0,0 +1,1159 @@
+---
+title: SuperlinkedRetriever
+---
+
+> [Superlinked](https://github.com/superlinked/superlinked) is a library for building context-aware vector search applications. It provides multi-modal vector spaces that can handle text similarity, categorical similarity, recency, and numerical values with flexible weighting strategies.
+
+This will help you get started with the SuperlinkedRetriever [retriever](/docs/concepts/retrievers/). For detailed documentation of all SuperlinkedRetriever features and configurations head to the [API reference](https://python.langchain.com/api_reference/superlinked/retrievers/langchain_superlinked.retrievers.SuperlinkedRetriever.html).
+
+### Further reading
+
+* External article: [Build RAG using LangChain & Superlinked](https://links.superlinked.com/langchain_article)
+* Integration repo: [superlinked/langchain-superlinked](https://github.com/superlinked/langchain-superlinked)
+* Superlinked core repo: [superlinked/superlinked](https://links.superlinked.com/langchain_repo_sl)
+
+### Integration details
+
+| Retriever | Source | Package |
+| :--- | :--- | :---: |
+[SuperlinkedRetriever](https://python.langchain.com/api_reference/superlinked/retrievers/langchain_superlinked.retrievers.SuperlinkedRetriever.html) | Multi-modal vector search | langchain-superlinked |
+
+## Setup
+
+The SuperlinkedRetriever requires the `langchain-superlinked` package and its peer dependency `superlinked`. You can install these with:
+
+```bash
+pip install -U langchain-superlinked superlinked
+```
+
+No API keys are required for basic usage as Superlinked can run in-memory or with local vector databases.
+
+```python
+# Optional: Set up for vector database usage
+# import os
+# os.environ["QDRANT_API_KEY"] = "your-api-key" # For Qdrant
+# No setup required for in-memory usage
+
+```
+
+### App and Query: what the retriever needs
+
+The retriever requires:
+
+* `sl_client`: a Superlinked App created by an executor's `.run()`
+* `sl_query`: a `QueryDescriptor` built via `sl.Query(...).find(...).similar(...).select(...).limit(...)`
+
+Minimal example:
+
+```python
+import superlinked.framework as sl
+from langchain_superlinked import SuperlinkedRetriever
+
+class Doc(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+doc = Doc()
+space = sl.TextSimilaritySpace(text=doc.content, model="sentence-transformers/all-MiniLM-L6-v2")
+index = sl.Index([space])
+
+query = (
+ sl.Query(index)
+ .find(doc)
+ .similar(space.text, sl.Param("query_text"))
+ .select([doc.content])
+ .limit(sl.Param("limit"))
+)
+
+source = sl.InMemorySource(schema=doc)
+app = sl.InMemoryExecutor(sources=[source], indices=[index]).run()
+
+retriever = SuperlinkedRetriever(sl_client=app, sl_query=query, page_content_field="content")
+```
+
+For a production setup, create the executor with a vector DB (e.g., Qdrant) and pass it as `vector_database=...` before calling `.run()`.
+
+## Instantiation
+
+```python
+import superlinked.framework as sl
+from langchain_superlinked import SuperlinkedRetriever
+
+
+# 1. Define Schema
+class DocumentSchema(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+
+doc_schema = DocumentSchema()
+
+# 2. Define Space and Index
+text_space = sl.TextSimilaritySpace(
+ text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+)
+doc_index = sl.Index([text_space])
+
+# 3. Define Query
+query = (
+ sl.Query(doc_index)
+ .find(doc_schema)
+ .similar(text_space.text, sl.Param("query_text"))
+ .select([doc_schema.content])
+ .limit(sl.Param("limit"))
+)
+
+# 4. Set up data and app
+documents = [
+ {
+ "id": "doc1",
+ "content": "Machine learning algorithms can process large datasets efficiently.",
+ },
+ {
+ "id": "doc2",
+ "content": "Natural language processing enables computers to understand human language.",
+ },
+ {
+ "id": "doc3",
+ "content": "Deep learning models require significant computational resources.",
+ },
+ {
+ "id": "doc4",
+ "content": "Artificial intelligence is transforming various industries.",
+ },
+ {
+ "id": "doc5",
+ "content": "Neural networks are inspired by biological brain structures.",
+ },
+]
+
+source = sl.InMemorySource(schema=doc_schema)
+executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])
+app = executor.run()
+source.put(documents)
+
+# 5. Create Retriever
+retriever = SuperlinkedRetriever(
+ sl_client=app, sl_query=query, page_content_field="content", k=3
+)
+```
+
+## Usage
+
+```python
+# Basic usage
+results = retriever.invoke("artificial intelligence and machine learning", limit=2)
+for i, doc in enumerate(results, 1):
+ print(f"Document {i}:")
+ print(f"Content: {doc.page_content}")
+ print(f"Metadata: {doc.metadata}")
+ print("---")
+```
+
+```python
+# Override k parameter at query time
+more_results = retriever.invoke("neural networks and deep learning", k=4)
+print(f"Retrieved {len(more_results)} documents:")
+for i, doc in enumerate(more_results, 1):
+ print(f"{i}. {doc.page_content[:50]}...")
+```
+
+## Use within a chain
+
+Like other retrievers, SuperlinkedRetriever can be incorporated into LLM applications via [chains](/docs/how_to/sequence/).
+
+We will need a LLM or chat model:
+
+import ChatModelTabs from "@theme/ChatModelTabs";
+
+
+
+```python
+# pip install -qU langchain-openai
+import getpass
+import os
+
+if not os.environ.get("OPENAI_API_KEY"):
+ os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
+
+from langchain_openai import ChatOpenAI
+
+llm = ChatOpenAI(model="gpt-4o-mini")
+```
+
+```python
+from langchain import hub
+from langchain_core.output_parsers import StrOutputParser
+from langchain_core.runnables import RunnablePassthrough
+
+prompt = hub.pull("rlm/rag-prompt")
+
+
+def format_docs(docs):
+ return "\n\n".join(doc.page_content for doc in docs)
+
+
+rag_chain = (
+ {"context": retriever | format_docs, "question": RunnablePassthrough()}
+ | prompt
+ | llm
+ | StrOutputParser()
+)
+
+rag_chain.invoke("What is machine learning and how does it work?")
+```
+
+## API reference
+
+For detailed documentation of all SuperlinkedRetriever features and configurations, head to the [API reference](https://python.langchain.com/api_reference/superlinked/retrievers/langchain_superlinked.retrievers.SuperlinkedRetriever.html).
+
+"""
+SuperlinkedRetriever Usage Examples
+
+This file demonstrates how to use the SuperlinkedRetriever with different
+space configurations to showcase its flexibility across various use cases.
+"""
+
+```python
+import superlinked.framework as sl
+from datetime import datetime, timedelta
+from typing import Optional, List, Dict, Any
+from langchain_core.documents import Document
+
+from langchain_superlinked import SuperlinkedRetriever
+```
+
+```python
+def example_1_simple_text_search():
+ """
+ Example 1: Simple text-based semantic search
+ Use case: Basic document retrieval based on content similarity
+ """
+ print("=== Example 1: Simple Text Search ===")
+
+ # 1. Define Schema
+ class DocumentSchema(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+ doc_schema = DocumentSchema()
+
+ # 2. Define Space and Index
+ text_space = sl.TextSimilaritySpace(
+ text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ doc_index = sl.Index([text_space])
+
+ # 3. Define Query
+ query = (
+ sl.Query(doc_index)
+ .find(doc_schema)
+ .similar(text_space.text, sl.Param("query_text"))
+ .select([doc_schema.content])
+ .limit(sl.Param("limit"))
+ )
+
+ # 4. Set up data and app using executor pattern
+ documents = [
+ {
+ "id": "doc1",
+ "content": "Machine learning algorithms can process large datasets efficiently.",
+ },
+ {
+ "id": "doc2",
+ "content": "Natural language processing enables computers to understand human language.",
+ },
+ {
+ "id": "doc3",
+ "content": "Deep learning models require significant computational resources.",
+ },
+ {
+ "id": "doc4",
+ "content": "Data science combines statistics, programming, and domain expertise.",
+ },
+ {
+ "id": "doc5",
+ "content": "Artificial intelligence is transforming various industries.",
+ },
+ ]
+
+ # Create source and executor
+ source = sl.InMemorySource(schema=doc_schema)
+ executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])
+ app = executor.run()
+
+ # Add data to the source after the app is running
+ source.put(documents)
+
+ # 5. Create Retriever
+ retriever = SuperlinkedRetriever(
+ sl_client=app, sl_query=query, page_content_field="content"
+ )
+
+ # 6. Use the retriever
+ results = retriever.invoke("artificial intelligence and machine learning", limit=3)
+
+ print(f"Query: 'artificial intelligence and machine learning'")
+ print(f"Found {len(results)} documents:")
+ for i, doc in enumerate(results, 1):
+ print(f" {i}. {doc.page_content}")
+ print()
+
+
+def example_2_multi_space_blog_search():
+ """
+ Example 2: Multi-space blog post search
+ Use case: Blog search with content, category, and recency
+ """
+ print("=== Example 2: Multi-Space Blog Search ===")
+
+ # 1. Define Schema
+ class BlogPostSchema(sl.Schema):
+ id: sl.IdField
+ title: sl.String
+ content: sl.String
+ category: sl.String
+ published_date: sl.Timestamp
+ view_count: sl.Integer
+
+ blog_schema = BlogPostSchema()
+
+ # 2. Define Multiple Spaces
+ # Text similarity for content
+ content_space = sl.TextSimilaritySpace(
+ text=blog_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ # Title similarity
+ title_space = sl.TextSimilaritySpace(
+ text=blog_schema.title, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ # Category similarity
+ category_space = sl.CategoricalSimilaritySpace(
+ category_input=blog_schema.category,
+ categories=["technology", "science", "business", "health", "travel"],
+ )
+
+ # Recency (favor recent posts)
+ recency_space = sl.RecencySpace(
+ timestamp=blog_schema.published_date,
+ period_time_list=[
+ sl.PeriodTime(timedelta(days=30)), # Last month
+ sl.PeriodTime(timedelta(days=90)), # Last 3 months
+ sl.PeriodTime(timedelta(days=365)), # Last year
+ ],
+ )
+
+ # Popularity (based on view count)
+ popularity_space = sl.NumberSpace(
+ number=blog_schema.view_count,
+ min_value=0,
+ max_value=10000,
+ mode=sl.Mode.MAXIMUM,
+ )
+
+ # 3. Create Index
+ blog_index = sl.Index(
+ [content_space, title_space, category_space, recency_space, popularity_space]
+ )
+
+ # 4. Define Query with multiple weighted spaces
+ blog_query = (
+ sl.Query(
+ blog_index,
+ weights={
+ content_space: sl.Param("content_weight"),
+ title_space: sl.Param("title_weight"),
+ category_space: sl.Param("category_weight"),
+ recency_space: sl.Param("recency_weight"),
+ popularity_space: sl.Param("popularity_weight"),
+ },
+ )
+ .find(blog_schema)
+ .similar(content_space.text, sl.Param("query_text"))
+ .select(
+ [
+ blog_schema.title,
+ blog_schema.content,
+ blog_schema.category,
+ blog_schema.published_date,
+ blog_schema.view_count,
+ ]
+ )
+ .limit(sl.Param("limit"))
+ )
+
+ # 5. Sample blog data
+ from datetime import datetime
+
+ # Convert datetime objects to unix timestamps (integers) as required by Timestamp schema field
+ blog_posts = [
+ {
+ "id": "post1",
+ "title": "Introduction to Machine Learning",
+ "content": "Machine learning is revolutionizing how we process data and make predictions.",
+ "category": "technology",
+ "published_date": int((datetime.now() - timedelta(days=5)).timestamp()),
+ "view_count": 1500,
+ },
+ {
+ "id": "post2",
+ "title": "The Future of AI in Healthcare",
+ "content": "Artificial intelligence is transforming medical diagnosis and treatment.",
+ "category": "health",
+ "published_date": int((datetime.now() - timedelta(days=15)).timestamp()),
+ "view_count": 2300,
+ },
+ {
+ "id": "post3",
+ "title": "Business Analytics with Python",
+ "content": "Learn how to use Python for business data analysis and visualization.",
+ "category": "business",
+ "published_date": int((datetime.now() - timedelta(days=45)).timestamp()),
+ "view_count": 980,
+ },
+ {
+ "id": "post4",
+ "title": "Deep Learning Neural Networks",
+ "content": "Understanding neural networks and their applications in modern AI.",
+ "category": "technology",
+ "published_date": int((datetime.now() - timedelta(days=2)).timestamp()),
+ "view_count": 3200,
+ },
+ ]
+
+ # Create source and executor
+ source = sl.InMemorySource(schema=blog_schema)
+ executor = sl.InMemoryExecutor(sources=[source], indices=[blog_index])
+ app = executor.run()
+
+ # Add data to the source after the app is running
+ source.put(blog_posts)
+
+ # 6. Create Retriever
+ retriever = SuperlinkedRetriever(
+ sl_client=app,
+ sl_query=blog_query,
+ page_content_field="content",
+ metadata_fields=["title", "category", "published_date", "view_count"],
+ )
+
+ # 7. Demonstrate different weighting strategies
+ scenarios = [
+ {
+ "name": "Content-focused search",
+ "params": {
+ "content_weight": 1.0,
+ "title_weight": 0.3,
+ "category_weight": 0.1,
+ "recency_weight": 0.2,
+ "popularity_weight": 0.1,
+ "limit": 3,
+ },
+ },
+ {
+ "name": "Recent posts prioritized",
+ "params": {
+ "content_weight": 0.5,
+ "title_weight": 0.2,
+ "category_weight": 0.1,
+ "recency_weight": 1.0,
+ "popularity_weight": 0.1,
+ "limit": 3,
+ },
+ },
+ {
+ "name": "Popular posts with category emphasis",
+ "params": {
+ "content_weight": 0.6,
+ "title_weight": 0.3,
+ "category_weight": 0.8,
+ "recency_weight": 0.3,
+ "popularity_weight": 0.9,
+ "limit": 3,
+ },
+ },
+ ]
+
+ query_text = "machine learning and AI applications"
+
+ for scenario in scenarios:
+ print(f"\n--- {scenario['name']} ---")
+ print(f"Query: '{query_text}'")
+
+ results = retriever.invoke(query_text, **scenario["params"])
+
+ for i, doc in enumerate(results, 1):
+ print(
+ f" {i}. {doc.metadata['title']} (Category: {doc.metadata['category']}, Views: {doc.metadata['view_count']})"
+ )
+
+ print()
+
+
+def example_3_ecommerce_product_search():
+ """
+ Example 3: E-commerce product search
+ Use case: Product search with price range, brand preference, and ratings
+ """
+ print("=== Example 3: E-commerce Product Search ===")
+
+ # 1. Define Schema
+ class ProductSchema(sl.Schema):
+ id: sl.IdField
+ name: sl.String
+ description: sl.String
+ brand: sl.String
+ price: sl.Float
+ rating: sl.Float
+ category: sl.String
+
+ product_schema = ProductSchema()
+
+ # 2. Define Spaces
+ description_space = sl.TextSimilaritySpace(
+ text=product_schema.description, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ name_space = sl.TextSimilaritySpace(
+ text=product_schema.name, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ brand_space = sl.CategoricalSimilaritySpace(
+ category_input=product_schema.brand,
+ categories=["Apple", "Samsung", "Sony", "Nike", "Adidas", "Canon"],
+ )
+
+ category_space = sl.CategoricalSimilaritySpace(
+ category_input=product_schema.category,
+ categories=["electronics", "clothing", "sports", "photography"],
+ )
+
+ # Price space (lower prices get higher scores in MINIMUM mode)
+ price_space = sl.NumberSpace(
+ number=product_schema.price,
+ min_value=10.0,
+ max_value=2000.0,
+ mode=sl.Mode.MINIMUM, # Favor lower prices
+ )
+
+ # Rating space (higher ratings get higher scores)
+ rating_space = sl.NumberSpace(
+ number=product_schema.rating,
+ min_value=1.0,
+ max_value=5.0,
+ mode=sl.Mode.MAXIMUM, # Favor higher ratings
+ )
+
+ # 3. Create Index
+ product_index = sl.Index(
+ [
+ description_space,
+ name_space,
+ brand_space,
+ category_space,
+ price_space,
+ rating_space,
+ ]
+ )
+
+ # 4. Define Query
+ product_query = (
+ sl.Query(
+ product_index,
+ weights={
+ description_space: sl.Param("description_weight"),
+ name_space: sl.Param("name_weight"),
+ brand_space: sl.Param("brand_weight"),
+ category_space: sl.Param("category_weight"),
+ price_space: sl.Param("price_weight"),
+ rating_space: sl.Param("rating_weight"),
+ },
+ )
+ .find(product_schema)
+ .similar(description_space.text, sl.Param("query_text"))
+ .select(
+ [
+ product_schema.name,
+ product_schema.description,
+ product_schema.brand,
+ product_schema.price,
+ product_schema.rating,
+ product_schema.category,
+ ]
+ )
+ .limit(sl.Param("limit"))
+ )
+
+ # 5. Sample product data
+ products = [
+ {
+ "id": "prod1",
+ "name": "Wireless Bluetooth Headphones",
+ "description": "High-quality wireless headphones with noise cancellation and long battery life.",
+ "brand": "Sony",
+ "price": 299.99,
+ "rating": 4.5,
+ "category": "electronics",
+ },
+ {
+ "id": "prod2",
+ "name": "Professional DSLR Camera",
+ "description": "Full-frame DSLR camera perfect for professional photography and videography.",
+ "brand": "Canon",
+ "price": 1299.99,
+ "rating": 4.8,
+ "category": "photography",
+ },
+ {
+ "id": "prod3",
+ "name": "Running Shoes",
+ "description": "Comfortable running shoes with excellent cushioning and support for athletes.",
+ "brand": "Nike",
+ "price": 129.99,
+ "rating": 4.3,
+ "category": "sports",
+ },
+ {
+ "id": "prod4",
+ "name": "Smartphone with 5G",
+ "description": "Latest smartphone with 5G connectivity, advanced camera, and all-day battery.",
+ "brand": "Samsung",
+ "price": 899.99,
+ "rating": 4.6,
+ "category": "electronics",
+ },
+ {
+ "id": "prod5",
+ "name": "Bluetooth Speaker",
+ "description": "Portable Bluetooth speaker with waterproof design and rich sound quality.",
+ "brand": "Sony",
+ "price": 79.99,
+ "rating": 4.2,
+ "category": "electronics",
+ },
+ ]
+
+ # Create source and executor
+ source = sl.InMemorySource(schema=product_schema)
+ executor = sl.InMemoryExecutor(sources=[source], indices=[product_index])
+ app = executor.run()
+
+ # Add data to the source after the app is running
+ source.put(products)
+
+ # 6. Create Retriever
+ retriever = SuperlinkedRetriever(
+ sl_client=app,
+ sl_query=product_query,
+ page_content_field="description",
+ metadata_fields=["name", "brand", "price", "rating", "category"],
+ )
+
+ # 7. Demonstrate different search strategies
+ scenarios = [
+ {
+ "name": "Quality-focused search (high ratings matter most)",
+ "query": "wireless audio device",
+ "params": {
+ "description_weight": 0.7,
+ "name_weight": 0.5,
+ "brand_weight": 0.2,
+ "category_weight": 0.3,
+ "price_weight": 0.1,
+ "rating_weight": 1.0, # Prioritize high ratings
+ "limit": 3,
+ },
+ },
+ {
+ "name": "Budget-conscious search (price matters most)",
+ "query": "electronics device",
+ "params": {
+ "description_weight": 0.6,
+ "name_weight": 0.4,
+ "brand_weight": 0.1,
+ "category_weight": 0.2,
+ "price_weight": 1.0, # Prioritize lower prices
+ "rating_weight": 0.3,
+ "limit": 3,
+ },
+ },
+ {
+ "name": "Brand-focused search (brand loyalty)",
+ "query": "sony products",
+ "params": {
+ "description_weight": 0.5,
+ "name_weight": 0.3,
+ "brand_weight": 1.0, # Prioritize specific brand
+ "category_weight": 0.2,
+ "price_weight": 0.2,
+ "rating_weight": 0.4,
+ "limit": 3,
+ },
+ },
+ ]
+
+ for scenario in scenarios:
+ print(f"\n--- {scenario['name']} ---")
+ print(f"Query: '{scenario['query']}'")
+
+ results = retriever.invoke(scenario["query"], **scenario["params"])
+
+ for i, doc in enumerate(results, 1):
+ metadata = doc.metadata
+ print(
+ f" {i}. {metadata['name']} ({metadata['brand']}) - ${metadata['price']} - ⭐{metadata['rating']}"
+ )
+
+ print()
+
+
+def example_4_news_article_search():
+ """
+ Example 4: News article search with sentiment and topics
+ Use case: News search with content, sentiment, topic categorization, and recency
+ """
+ print("=== Example 4: News Article Search ===")
+
+ # 1. Define Schema
+ class NewsArticleSchema(sl.Schema):
+ id: sl.IdField
+ headline: sl.String
+ content: sl.String
+ topic: sl.String
+ sentiment_score: sl.Float # -1 (negative) to 1 (positive)
+ published_at: sl.Timestamp
+ source: sl.String
+
+ news_schema = NewsArticleSchema()
+
+ # 2. Define Spaces
+ content_space = sl.TextSimilaritySpace(
+ text=news_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ headline_space = sl.TextSimilaritySpace(
+ text=news_schema.headline, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ topic_space = sl.CategoricalSimilaritySpace(
+ category_input=news_schema.topic,
+ categories=[
+ "technology",
+ "politics",
+ "business",
+ "sports",
+ "entertainment",
+ "science",
+ ],
+ )
+
+ source_space = sl.CategoricalSimilaritySpace(
+ category_input=news_schema.source,
+ categories=["Reuters", "BBC", "CNN", "TechCrunch", "Bloomberg"],
+ )
+
+ # Sentiment space (can be configured to prefer positive or negative news)
+ sentiment_space = sl.NumberSpace(
+ number=news_schema.sentiment_score,
+ min_value=-1.0,
+ max_value=1.0,
+ mode=sl.Mode.MAXIMUM, # Default to preferring positive news
+ )
+
+ # Recency space
+ recency_space = sl.RecencySpace(
+ timestamp=news_schema.published_at,
+ period_time_list=[
+ sl.PeriodTime(timedelta(hours=6)), # Last 6 hours
+ sl.PeriodTime(timedelta(days=1)), # Last day
+ sl.PeriodTime(timedelta(days=7)), # Last week
+ ],
+ )
+
+ # 3. Create Index
+ news_index = sl.Index(
+ [
+ content_space,
+ headline_space,
+ topic_space,
+ source_space,
+ sentiment_space,
+ recency_space,
+ ]
+ )
+
+ # 4. Define Query
+ news_query = (
+ sl.Query(
+ news_index,
+ weights={
+ content_space: sl.Param("content_weight"),
+ headline_space: sl.Param("headline_weight"),
+ topic_space: sl.Param("topic_weight"),
+ source_space: sl.Param("source_weight"),
+ sentiment_space: sl.Param("sentiment_weight"),
+ recency_space: sl.Param("recency_weight"),
+ },
+ )
+ .find(news_schema)
+ .similar(content_space.text, sl.Param("query_text"))
+ .select(
+ [
+ news_schema.headline,
+ news_schema.content,
+ news_schema.topic,
+ news_schema.sentiment_score,
+ news_schema.published_at,
+ news_schema.source,
+ ]
+ )
+ .limit(sl.Param("limit"))
+ )
+
+ # 5. Sample news data
+ # Convert datetime objects to unix timestamps (integers) as required by Timestamp schema field
+ news_articles = [
+ {
+ "id": "news1",
+ "headline": "Major Breakthrough in AI Research Announced",
+ "content": "Scientists have developed a new artificial intelligence model that shows remarkable improvements in natural language understanding.",
+ "topic": "technology",
+ "sentiment_score": 0.8,
+ "published_at": int((datetime.now() - timedelta(hours=2)).timestamp()),
+ "source": "TechCrunch",
+ },
+ {
+ "id": "news2",
+ "headline": "Stock Market Faces Volatility Amid Economic Concerns",
+ "content": "Financial markets experienced significant fluctuations today as investors react to new economic data and policy announcements.",
+ "topic": "business",
+ "sentiment_score": -0.3,
+ "published_at": int((datetime.now() - timedelta(hours=8)).timestamp()),
+ "source": "Bloomberg",
+ },
+ {
+ "id": "news3",
+ "headline": "New Climate Research Shows Promising Results",
+ "content": "Recent studies indicate that innovative climate technologies are showing positive environmental impact and could help address climate change.",
+ "topic": "science",
+ "sentiment_score": 0.6,
+ "published_at": int((datetime.now() - timedelta(hours=12)).timestamp()),
+ "source": "Reuters",
+ },
+ {
+ "id": "news4",
+ "headline": "Tech Companies Report Strong Quarterly Earnings",
+ "content": "Several major technology companies exceeded expectations in their quarterly earnings reports, driven by AI and cloud computing growth.",
+ "topic": "technology",
+ "sentiment_score": 0.7,
+ "published_at": int((datetime.now() - timedelta(hours=4)).timestamp()),
+ "source": "CNN",
+ },
+ ]
+
+ # Create source and executor
+ source = sl.InMemorySource(schema=news_schema)
+ executor = sl.InMemoryExecutor(sources=[source], indices=[news_index])
+ app = executor.run()
+
+ # Add data to the source after the app is running
+ source.put(news_articles)
+
+ # 6. Create Retriever
+ retriever = SuperlinkedRetriever(
+ sl_client=app,
+ sl_query=news_query,
+ page_content_field="content",
+ metadata_fields=[
+ "headline",
+ "topic",
+ "sentiment_score",
+ "published_at",
+ "source",
+ ],
+ )
+
+ # 7. Demonstrate different news search strategies
+ print(f"Query: 'artificial intelligence developments'")
+
+ # Recent technology news
+ results = retriever.invoke(
+ "artificial intelligence developments",
+ content_weight=0.8,
+ headline_weight=0.6,
+ topic_weight=0.4,
+ source_weight=0.2,
+ sentiment_weight=0.3,
+ recency_weight=1.0, # Prioritize recent news
+ limit=2,
+ )
+
+ print("\nRecent Technology News:")
+ for i, doc in enumerate(results, 1):
+ metadata = doc.metadata
+ published_timestamp = metadata["published_at"]
+ # Convert unix timestamp back to datetime for display calculation
+ published_time = datetime.fromtimestamp(published_timestamp)
+ hours_ago = (datetime.now() - published_time).total_seconds() / 3600
+ sentiment = (
+ "📈 Positive"
+ if metadata["sentiment_score"] > 0
+ else "📉 Negative"
+ if metadata["sentiment_score"] < 0
+ else "➡️ Neutral"
+ )
+
+ print(f" {i}. {metadata['headline']}")
+ print(f" Source: {metadata['source']} | {sentiment} | {hours_ago:.1f}h ago")
+
+ print()
+
+
+def demonstrate_langchain_integration():
+ """
+ Example 5: Integration with LangChain RAG pipeline
+ Shows how to use the SuperlinkedRetriever in a complete RAG workflow
+ """
+ print("=== Example 5: LangChain RAG Integration ===")
+
+ # This would typically be used with an actual LLM
+ # For demo purposes, we'll just show the retrieval part
+
+ # Quick setup of a simple retriever
+ class FAQSchema(sl.Schema):
+ id: sl.IdField
+ question: sl.String
+ answer: sl.String
+ category: sl.String
+
+ faq_schema = FAQSchema()
+
+ text_space = sl.TextSimilaritySpace(
+ text=faq_schema.question, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ category_space = sl.CategoricalSimilaritySpace(
+ category_input=faq_schema.category,
+ categories=["technical", "billing", "general", "account"],
+ )
+
+ faq_index = sl.Index([text_space, category_space])
+
+ faq_query = (
+ sl.Query(
+ faq_index,
+ weights={
+ text_space: sl.Param("text_weight"),
+ category_space: sl.Param("category_weight"),
+ },
+ )
+ .find(faq_schema)
+ .similar(text_space.text, sl.Param("query_text"))
+ .select([faq_schema.question, faq_schema.answer, faq_schema.category])
+ .limit(sl.Param("limit"))
+ )
+
+ # Sample FAQ data
+ faqs = [
+ {
+ "id": "faq1",
+ "question": "How do I reset my password?",
+ "answer": "You can reset your password by clicking 'Forgot Password' on the login page and following the email instructions.",
+ "category": "account",
+ },
+ {
+ "id": "faq2",
+ "question": "Why is my API not working?",
+ "answer": "Check your API key, rate limits, and ensure you're using the correct endpoint URL.",
+ "category": "technical",
+ },
+ {
+ "id": "faq3",
+ "question": "How do I upgrade my subscription?",
+ "answer": "Visit the billing section in your account settings to upgrade your plan.",
+ "category": "billing",
+ },
+ ]
+
+ # Create source and executor
+ source = sl.InMemorySource(schema=faq_schema)
+ executor = sl.InMemoryExecutor(sources=[source], indices=[faq_index])
+ app = executor.run()
+
+ # Add data to the source after the app is running
+ source.put(faqs)
+
+ retriever = SuperlinkedRetriever(
+ sl_client=app,
+ sl_query=faq_query,
+ page_content_field="answer",
+ metadata_fields=["question", "category"],
+ )
+
+ # Simulate a RAG query
+ user_question = "I can't access the API"
+
+ print(f"User Question: '{user_question}'")
+ print("Retrieving relevant context...")
+
+ context_docs = retriever.invoke(
+ user_question, text_weight=1.0, category_weight=0.3, limit=2
+ )
+
+ print("\nRetrieved Context:")
+ for i, doc in enumerate(context_docs, 1):
+ print(f" {i}. Q: {doc.metadata['question']}")
+ print(f" A: {doc.page_content}")
+ print(f" Category: {doc.metadata['category']}")
+
+ print(
+ "\n[In a real RAG setup, this context would be passed to an LLM to generate a response]"
+ )
+ print()
+
+
+def example_6_qdrant_vector_database():
+ """
+ Example 6: Same retriever with Qdrant vector database
+ Use case: Production deployment with persistent vector storage
+
+ This demonstrates that SuperlinkedRetriever is vector database agnostic.
+ The SAME retriever code works with Qdrant (or Redis, MongoDB) by only
+ changing the executor configuration, not the retriever implementation.
+ """
+ print("=== Example 6: Qdrant Vector Database ===")
+
+ # 1. Define Schema (IDENTICAL to Example 1)
+ class DocumentSchema(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+ doc_schema = DocumentSchema()
+
+ # 2. Define Space and Index (IDENTICAL to Example 1)
+ text_space = sl.TextSimilaritySpace(
+ text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+ )
+
+ doc_index = sl.Index([text_space])
+
+ # 3. Define Query (IDENTICAL to Example 1)
+ query = (
+ sl.Query(doc_index)
+ .find(doc_schema)
+ .similar(text_space.text, sl.Param("query_text"))
+ .select([doc_schema.content])
+ .limit(sl.Param("limit"))
+ )
+
+ # 4. Configure Qdrant Vector Database (ONLY DIFFERENCE!)
+ print("🔧 Configuring Qdrant vector database...")
+ try:
+ qdrant_vector_db = sl.QdrantVectorDatabase(
+ url="https://your-qdrant-cluster.qdrant.io", # Replace with your Qdrant URL
+ api_key="your-api-key-here", # Replace with your API key
+ default_query_limit=10,
+ vector_precision=sl.Precision.FLOAT16,
+ )
+ print("Qdrant configuration created (credentials needed for actual connection)")
+ except Exception as e:
+ print(f"Qdrant not configured (expected without credentials): {e}")
+ print("Using in-memory fallback for demonstration...")
+ qdrant_vector_db = None
+
+ # 5. Set up data and app (SLIGHT DIFFERENCE - vector database parameter)
+ documents = [
+ {
+ "id": "doc1",
+ "content": "Machine learning algorithms can process large datasets efficiently.",
+ },
+ {
+ "id": "doc2",
+ "content": "Natural language processing enables computers to understand human language.",
+ },
+ {
+ "id": "doc3",
+ "content": "Deep learning models require significant computational resources.",
+ },
+ {
+ "id": "doc4",
+ "content": "Data science combines statistics, programming, and domain expertise.",
+ },
+ {
+ "id": "doc5",
+ "content": "Artificial intelligence is transforming various industries.",
+ },
+ ]
+
+ # Create source and executor with Qdrant (or fallback to in-memory)
+ source = sl.InMemorySource(schema=doc_schema)
+
+ if qdrant_vector_db:
+ # Production setup with Qdrant
+ executor = sl.InMemoryExecutor(
+ sources=[source],
+ indices=[doc_index],
+ vector_database=qdrant_vector_db, # This makes it use Qdrant!
+ )
+ storage_type = "Qdrant (persistent)"
+ else:
+ # Fallback to in-memory for demo
+ executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])
+ storage_type = "In-Memory (fallback)"
+
+ app = executor.run()
+
+ # Add data to the source after the app is running
+ source.put(documents)
+
+ # 6. Create Retriever (IDENTICAL CODE!)
+ retriever = SuperlinkedRetriever(
+ sl_client=app, sl_query=query, page_content_field="content"
+ )
+
+ # 7. Use the retriever (IDENTICAL CODE!)
+ results = retriever.invoke("artificial intelligence and machine learning", limit=3)
+
+ print(f"Vector Storage: {storage_type}")
+ print(f"Query: 'artificial intelligence and machine learning'")
+ print(f"Found {len(results)} documents:")
+ for i, doc in enumerate(results, 1):
+ print(f" {i}. {doc.page_content}")
+
+ print(
+ "\nKey Insight: Same SuperlinkedRetriever code works with any vector database!"
+ )
+ print(
+ "Only executor configuration changes, retriever implementation stays identical"
+ )
+ print("Switch between in-memory → Qdrant → Redis → MongoDB without code changes")
+ print()
+
+
+def main():
+ """
+ Run all examples to demonstrate the flexibility of SuperlinkedRetriever
+ """
+ print("SuperlinkedRetriever Examples")
+ print("=" * 50)
+ print("This file demonstrates how the SuperlinkedRetriever can be used")
+ print("with different space configurations for various use cases.\n")
+
+ try:
+ example_1_simple_text_search()
+ example_2_multi_space_blog_search()
+ example_3_ecommerce_product_search()
+ example_4_news_article_search()
+ demonstrate_langchain_integration()
+ example_6_qdrant_vector_database()
+
+ print("All examples completed successfully!")
+
+ except Exception as e:
+ print(f"Error running examples: {e}")
+ print("Make sure you have 'superlinked' package installed:")
+ print("pip install superlinked")
+```
diff --git a/src/oss/python/integrations/retrievers/superlinked_examples.mdx b/src/oss/python/integrations/retrievers/superlinked_examples.mdx
new file mode 100644
index 000000000..ab657fc5d
--- /dev/null
+++ b/src/oss/python/integrations/retrievers/superlinked_examples.mdx
@@ -0,0 +1,173 @@
+---
+title: SuperlinkedRetriever Examples
+---
+This notebook demonstrates how to build a Superlinked App and Query Descriptor and use them with the LangChain `SuperlinkedRetriever`.
+
+Install the integration from PyPI:
+
+```bash
+pip install -U langchain-superlinked superlinked
+```
+
+## Setup
+
+Install the integration and its peer dependency:
+
+```bash
+pip install -U langchain-superlinked superlinked
+```
+
+## Instantiation
+
+See below for creating a Superlinked App (`sl_client`) and a `QueryDescriptor` (`sl_query`), then wiring them into `SuperlinkedRetriever`.
+
+## Usage
+
+Call `retriever.invoke(query_text, **params)` to retrieve `Document` objects. Examples below show single-space and multi-space setups.
+
+## Use within a chain
+
+The retriever can be used in LangChain chains by piping it into your prompt and model. See the main Superlinked retriever page for a full RAG example.
+
+## API reference
+
+Refer to the API docs:
+
+* https://python.langchain.com/api_reference/superlinked/retrievers/langchain_superlinked.retrievers.SuperlinkedRetriever.html
+
+```python
+import superlinked.framework as sl
+from langchain_superlinked import SuperlinkedRetriever
+from datetime import timedelta
+
+
+# Define schema
+class DocumentSchema(sl.Schema):
+ id: sl.IdField
+ content: sl.String
+
+
+doc_schema = DocumentSchema()
+
+# Space + index
+text_space = sl.TextSimilaritySpace(
+ text=doc_schema.content, model="sentence-transformers/all-MiniLM-L6-v2"
+)
+doc_index = sl.Index([text_space])
+
+# Query descriptor
+query = (
+ sl.Query(doc_index)
+ .find(doc_schema)
+ .similar(text_space.text, sl.Param("query_text"))
+ .select([doc_schema.content])
+ .limit(sl.Param("limit"))
+)
+
+# Minimal app
+source = sl.InMemorySource(schema=doc_schema)
+executor = sl.InMemoryExecutor(sources=[source], indices=[doc_index])
+app = executor.run()
+
+# Data
+source.put(
+ [
+ {"id": "1", "content": "Machine learning algorithms process data efficiently."},
+ {
+ "id": "2",
+ "content": "Natural language processing understands human language.",
+ },
+ {"id": "3", "content": "Deep learning models require significant compute."},
+ ]
+)
+
+# Retriever
+retriever = SuperlinkedRetriever(
+ sl_client=app, sl_query=query, page_content_field="content"
+)
+
+retriever.invoke("artificial intelligence", limit=2)
+```
+
+```python
+# Multi-space example (blog posts)
+class BlogPostSchema(sl.Schema):
+ id: sl.IdField
+ title: sl.String
+ content: sl.String
+ category: sl.String
+ published_date: sl.Timestamp
+
+
+blog = BlogPostSchema()
+
+content_space = sl.TextSimilaritySpace(
+ text=blog.content, model="sentence-transformers/all-MiniLM-L6-v2"
+)
+title_space = sl.TextSimilaritySpace(
+ text=blog.title, model="sentence-transformers/all-MiniLM-L6-v2"
+)
+cat_space = sl.CategoricalSimilaritySpace(
+ category_input=blog.category, categories=["technology", "science", "business"]
+)
+recency_space = sl.RecencySpace(
+ timestamp=blog.published_date,
+ period_time_list=[
+ sl.PeriodTime(timedelta(days=30)),
+ sl.PeriodTime(timedelta(days=90)),
+ ],
+)
+
+blog_index = sl.Index([content_space, title_space, cat_space, recency_space])
+
+blog_query = (
+ sl.Query(
+ blog_index,
+ weights={
+ content_space: sl.Param("content_weight"),
+ title_space: sl.Param("title_weight"),
+ cat_space: sl.Param("category_weight"),
+ recency_space: sl.Param("recency_weight"),
+ },
+ )
+ .find(blog)
+ .similar(content_space.text, sl.Param("query_text"))
+ .select([blog.title, blog.content, blog.category, blog.published_date])
+ .limit(sl.Param("limit"))
+)
+
+source = sl.InMemorySource(schema=blog)
+app = sl.InMemoryExecutor(sources=[source], indices=[blog_index]).run()
+
+from datetime import datetime
+
+source.put(
+ [
+ {
+ "id": "p1",
+ "title": "Intro to ML",
+ "content": "Machine learning 101",
+ "category": "technology",
+ "published_date": int((datetime.now() - timedelta(days=5)).timestamp()),
+ },
+ {
+ "id": "p2",
+ "title": "AI in Healthcare",
+ "content": "Transforming diagnosis",
+ "category": "science",
+ "published_date": int((datetime.now() - timedelta(days=15)).timestamp()),
+ },
+ ]
+)
+
+blog_retriever = SuperlinkedRetriever(
+ sl_client=app,
+ sl_query=blog_query,
+ page_content_field="content",
+ metadata_fields=["title", "category", "published_date"],
+)
+
+blog_retriever.invoke(
+ "machine learning", content_weight=1.0, recency_weight=0.5, limit=2
+)
+```